Chin. Phys. Lett.  2019, Vol. 36 Issue (6): 067202    DOI: 10.1088/0256-307X/36/6/067202
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Full-Quantum Simulation of Graphene Self-Switching Diodes
Ashkan Horri1**, Rahim Faez2
1Department of Electrical Engineering, Arak Branch, Islamic Azad University Arak, Iran
2Department of Electrical Engineering Tehran, Sharif University of Technology, Iran
Cite this article:   
Ashkan Horri, Rahim Faez 2019 Chin. Phys. Lett. 36 067202
Download: PDF(845KB)   PDF(mobile)(845KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present a quantum study on the electrical behavior of the self-switching diode (SSD). Our simulation is based on non-equilibrium Green's function formalism along with an atomistic tight-binding model. Using this method, electrical characteristics of devices, such as turn-on voltage, rectification ratio, and differential resistance, are investigated. Also, the effects of geometrical variations on the electrical parameters of SSDs are simulated. The carrier distribution inside the nano-channel is successfully simulated in a two-dimensional model under zero, reverse, and forward bias conditions. The results indicate that the turn-on voltage, rectification ratio, and differential resistance can be optimized by choosing appropriate geometrical parameters.
Received: 21 January 2019      Published: 18 May 2019
PACS:  72.80.Vp (Electronic transport in graphene)  
  85.35.-p (Nanoelectronic devices)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/6/067202       OR      https://cpl.iphy.ac.cn/Y2019/V36/I6/067202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ashkan Horri
Rahim Faez
[1]Lee J, Lee S C, Kim Y, Heo J, Lee K, Lee D, Kim J, Lee S, Lee C S, Nam M S and Jun S C 2016 Nanotechnology 27 075303
[2]Horri A, Faez R, Pourfath M and darvish G 2017 IEEE Trans. Electron Devices 64 3459
[3]Horri A, Faez R, Pourfath M and Darvish G 2017 J. Appl. Phys. 121 214503
[4]Mestizo I E, Briones E, Briones J, Drooped R, Perez-Caro M, McMurty S, Hehn M, Montaigne F and Mendez-Garcia V H 2016 Jpn. J. Appl. Phys. 55 014304
[5]Song A M, Missous M, Omling P, Peaker A R, Samuelson L and Seifert W 2003 Appl. Phys. Lett. 83 1881
[6]Balocco C, Kasjoo S R, Lu X F, Zhang L Q, Alimi Y, Winnerl S and Song A M 2011 Appl. Phys. Lett. 98 223501
[7]Farhi G, Saracco E, Beerens J, Morris D, Charlebois S A and Raskin J P 2007 Solid-State Electron. 51 1245
[8]Kettle J, Perks R M and Holye R T 2009 Electron. Lett. 45 79
[9]Irshaid M Y, Balocco C, Luo Y, Bao P, Brox-Nilsen C and Song A M 2011 Appl. Phys. Lett. 99 092101
[10]Al-Dirini F, Hossain F M, Nirmalathas A and Skafidas E 2015 Sci. Rep. 4 3983
[11]Al-Dirini F, Hossain F M, Nirmalathas A and Skafidas E 2014 Nanoscale 6 7628
[12]Westlund A, Winters M, Ivanov I G, Hassan J, Nilsson P A, Janzen E, Rorsman N and Grahn J 2015 Appl. Phys. Lett. 106 093116
[13]Winters M, Thorsell M, Strupiński W and Rorsman N 2015 Appl. Phys. Lett. 107 143508
[14]Al-Dirini F, Hossain F M, Mohammed M A, Nirmalathas A and Skafidas E 2015 Sci. Rep. 5 14815
[15]Guo J, Datta S, Lundstrom M and Anantam M P 2004 Int. J. Multiscale Comput. Eng. 2 257
[16]Shin M 2009 J. Appl. Phys. 106 054505
[17]Wang J, Zhang G, Ye F and Wang X 2015 J. Phys.: Condens. Matter 27 225305
[18]Zhang G P and Qin Z J 2011 Chem. Phys. Lett. 516 225
Related articles from Frontiers Journals
[1] Lijun Zhu, Lin Li, Xiaodong Fan, Zhongniu Xie, and Changgan Zeng. Effect of Boundary Scattering on Magneto-Transport Performance in BN-Encapsulated Graphene[J]. Chin. Phys. Lett., 2022, 39(9): 067202
[2] Wen-Han Dong, De-Liang Bao, Jia-Tao Sun, Feng Liu, and Shixuan Du. Manipulation of Dirac Fermions in Nanochain-Structured Graphene[J]. Chin. Phys. Lett., 2021, 38(9): 067202
[3] Hang Yang, Wei Chen, Ming-Yang Li, Feng Xiong, Guang Wang, Sen Zhang, Chu-Yun Deng, Gang Peng, and Shi-Qiao Qin. Ultrathin Al Oxide Seed Layer for Atomic Layer Deposition of High-$\kappa$ Al$_{2}$O$_{3}$ Dielectrics on Graphene[J]. Chin. Phys. Lett., 2020, 37(7): 067202
[4] Ran Tao, Lin Li, Li-Jun Zhu, Yue-Dong Yan, Lin-Hai Guo, Xiao-Dong Fan, and Chang-Gan Zeng. Giant-Capacitance-Induced Wide Quantum Hall Plateaus in Graphene on LaAlO$_{3}$/SrTiO$_{3}$ Heterostructures[J]. Chin. Phys. Lett., 2020, 37(7): 067202
[5] Jian-Ying Chen, Lu Liu, Chun-Xia Li, Jing-Ping Xu. Chemical Vapor Deposition Growth of Large-Area Monolayer MoS$_{2}$ and Fabrication of Relevant Back-Gated Transistor[J]. Chin. Phys. Lett., 2019, 36(3): 067202
[6] Yu-Bing Wang, Wei-Hong Yin, Qin Han, Xiao-Hong Yang, Han Ye, Shuai Wang, Qian-Qian Lv, Dong-Dong Yin. The Nonlinear Electronic Transport in Multilayer Graphene on Silicon-on-Insulator Substrates[J]. Chin. Phys. Lett., 2017, 34(6): 067202
[7] Yan-Hua Li, Yong-Jian Xiong. Single-Parameter Quantum Pumping in Graphene Nanoribbons with Staggered Sublattice Potential[J]. Chin. Phys. Lett., 2017, 34(5): 067202
[8] Ze-Zhao He, Ke-Wu Yang, Cui Yu, Qing-Bin Liu, Jing-Jing Wang, Xu-Bo Song, Ting-Ting Han, Zhi-Hong Feng, Shu-Jun Cai. Comparative Study of Monolayer and Bilayer Epitaxial Graphene Field-Effect Transistors on SiC Substrates[J]. Chin. Phys. Lett., 2016, 33(08): 067202
[9] Tian-Yi Han, Guang-Wei Deng, Da Wei, Guo-Ping Guo. Multiplexing Read-Out of Charge Qubits by a Superconducting Resonator[J]. Chin. Phys. Lett., 2016, 33(04): 067202
[10] Sedighe Salimian, Mohammad Esmaeil Azim Araghi. Effect of Residual Charge Carrier on the Performance of a Graphene Field Effect Transistor[J]. Chin. Phys. Lett., 2016, 33(01): 067202
[11] HE Ze-Zhao, YANG Ke-Wu, YU Cui, LI Jia, LIU Qing-Bin, LU Wei-Li, FENG Zhi-Hong, CAI Shu-Jun. Improvement of Metal-Graphene Ohmic Contact Resistance in Bilayer Epitaxial Graphene Devices[J]. Chin. Phys. Lett., 2015, 32(11): 067202
[12] FAN Tian-Ju, YUAN Chun-Qiu, TANG Wei, TONG Song-Zhao, LIU Yi-Dong, HUANG Wei, MIN Yong-Gang, Arthur J. Epstein. A Novel Method of Fabricating Flexible Transparent Conductive Large Area Graphene Film[J]. Chin. Phys. Lett., 2015, 32(07): 067202
[13] YI Ming-Dong, GUO Jia-Lin, HU Bo, XIA Xian-Hai, FAN Qu-Li, XIE Ling-Hai, HUANG Wei. Memory Behaviors Based on ITO/Graphene Oxide/Al Structure[J]. Chin. Phys. Lett., 2015, 32(07): 067202
[14] LUO Wen-Gang, WANG Hua-Feng, CAI Kai-Ming, HAN Wen-Peng, TAN Ping-Heng, HU Ping-An, WANG Kai-You. Synthesis of Homogenous Bilayer Graphene on Industrial Cu Foil[J]. Chin. Phys. Lett., 2014, 31(06): 067202
[15] F. Sattari, E. Faizabadi. Wavevector Filtering through Monolayer and Bilayer Graphene Superlattices[J]. Chin. Phys. Lett., 2013, 30(9): 067202
Viewed
Full text


Abstract