Chin. Phys. Lett.  2018, Vol. 35 Issue (2): 027701    DOI: 10.1088/0256-307X/35/2/027701
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Gap States of ZnO Thin Films by New Methods: Optical Spectroscopy, Optical Conductivity and Optical Dispersion Energy
Vali Dalouji1**, Shahram Solaymani2, Laya Dejam3, Seyed Mohammad Elahi2, Sahar Rezaee4, Dariush Mehrparvar1
1Department of Physics, Faculty of Science, Malayer University, Malayer, Iran
2Department of Physics, Science and Research Branch, Islamic Azad University, Tehran, Iran
3Department of Physics, West Tehran Branch, Islamic Azad University, Tehran, Iran
4Department of Physics, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
Cite this article:   
Vali Dalouji, Shahram Solaymani, Laya Dejam et al  2018 Chin. Phys. Lett. 35 027701
Download: PDF(1090KB)   PDF(mobile)(1081KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The optical reflectance and transmittance spectra in the wavelength range of 300–2500 nm are used to compute the absorption coefficient of zinc oxide films annealed at different post-annealing temperatures 400, 500 and 600$^\circ\!$C. The values of the cross point between the curves of the real and imaginary parts of the optical conductivity $\sigma_{1}$ and $\sigma_{1}$ with energy axis of films exhibit values that correspond to optical gaps and are about 3.25–3.3 eV. The maxima of peaks in plots $dR/d\lambda$ and $dT/d\lambda$ versus wavelength of films exhibit optical gaps at about 3.12–3.25 eV. The values of the fundamental indirect band gap obtained from the Tauc model are at about 3.14–3.2 eV. It can be seen that films annealed at 600$^{\circ}\!$C have the minimum indirect optical band gap at about 3.15 eV. The films annealed at 600$^{\circ}\!$C have Urbach's energy minimum of 1.38 eV and hence have minimum disorder. The dispersion energy $E_{\rm d}$ of films annealed at 500$^{\circ}\!$C has the minimum value of 43 eV.
Received: 18 September 2017      Published: 23 January 2018
PACS:  77.55.hf (ZnO)  
  78.66.Bz (Metals and metallic alloys)  
  78.68.+m (Optical properties of surfaces)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/2/027701       OR      https://cpl.iphy.ac.cn/Y2018/V35/I2/027701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Vali Dalouji
Shahram Solaymani
Laya Dejam
Seyed Mohammad Elahi
Sahar Rezaee
Dariush Mehrparvar
[1]Zang Z, Wen M, Chen W et al 2015 Mater. Des. 84 418
[2]Zang Z and Tang X 2015 J. Alloys Compd. 619 98
[3]Sun Y, Riley D J and Ashfold M N R 2006 J. Phys. Chem. B 110 15186
[4]Jin P, Nakao S, Wang S X et al 2003 Appl. Phys. Lett. 82 1024
[5]Henley S J, Ashfold M N R and Cherns D 2004 Surf. Coat. Technol. 271 177
[6]Duan L B, Zhao X R, Liu J M et al 2012 Phys. Scr. 85 035709
[7]Liang Z, Yu X, Lei B et al 2011 J. Alloy. Compd. 509 5437
[8]Cho S, Ma J, Kim Y et al 1999 Appl. Phys. Lett. 75 2761
[9]Chen H, Jin H J and Park C B 2009 Electr. Electron. Mater. 10 93
[10]Dalouji V and Asareh N 2017 Opt. Quantum Electron. 49 262
[11]Dalouji V, Elahi S M and Ahmadmarvili A 2017 Silicon 9 717
[12]Dalouji V and Elahi S M 2016 Surf. Rev. Lett. 23 1650002
[13]Dalouji V 2016 Mater. Sci.-Poland 34 337
[14]Dalouji V, Elahi S M, Ghaderi A et al 2016 Chin. Phys. Lett. 33 057203
[15]Dalouji V, Elahi S M, Solaymani S et al 2016 Appl. Phys. A 122 541
[16]Ţălu Ş Bramowicz M, Kulesza S et al 2016 Microsc. Res. Tech. 79 1208
[17]Ţălu Ş Bramowicz M, Kulesza S et al 2016 J. Microsc. 264 143
[18]Ghodselahi T, Solaymani S, Akbarzadeh P M et al 2012 Eur. Phys. J. D 66 299
[19]Dalouji V, Elahi S M, Solaymani S et al 2016 Eur. Phys. J. Plus 131 84
[20]Abbas M M, Shehab A A, Al-Samuraee A K et al 2011 Energ. Procedia 6 241
[21]Metin H and Esen R 2003 Erciyes University Fen Bilimeri Enstitusu Dergisi 19 96
[22]Farag A A M, Cavas M, Yakuphanoglu F et al 2011 J. Alloys Compd. 509 7900
[23]Sakr G B, Yahia I S, Fadel M et al 2010 J. Alloys Compd. 507 557
[24]Fujii T, Nishikiori H and Tamura T 1995 Chem. Phys. Lett. 233 424
[25]Gagandeep S K, Lark B S and Sahota H S 2000 Nucl. Sci. Eng. 134 208
[26]Sharma P and Katyal S C 2008 Mater. Chem. Phys. 112 892
[27]Pejova B and Grozdanov I 2001 J. Solid State Chem. 158 49
[28]Kenny N, Kannewurf C R and Whitmore D H 1966 J. Phys. Chem. Solids 27 1237
[29]Mott N F, Davis E A 1979 Electronic Process in NonCrystalline Materials (Oxford: Calendron Press)
[30]Khan S A, Lal J K and AlGhamd A A 2010 Opt. Laser Technol. 42 839
[31]Shan F K, Liu G X, Lee W J et al 2007 J. Appl. Phys. 101 053106
[32]Cohen M H, Fritzsche H and Ovshinsky S R 1969 Phys. Rev. Lett. 22 1065
[33]Wemple S H and Didomenico M 1971 J. Phys. Rev. B 3 1338
[34]Wemple S H and Didomenico M 1973 J. Phys. Rev. B 7 3767
Related articles from Frontiers Journals
[1] Yuan Liu, Li Wang, Shu-Ting Cai, Ya-Yi Chen, Rongsheng Chen, Xiao-Ming Xiong, Kui-Wei Geng. Temperature Dependence of Electrical Characteristics in Indium-Zinc-Oxide Thin Film Transistors from 10K to 400K[J]. Chin. Phys. Lett., 2018, 35(9): 027701
[2] Ya-Yi Chen, Yuan Liu, Zhao-Hui Wu, Li Wang, Bin Li, Yun-Fei En, Yi-Qiang Chen. Low-Frequency Noise in Amorphous Indium Zinc Oxide Thin Film Transistors with Aluminum Oxide Gate Insulator[J]. Chin. Phys. Lett., 2018, 35(4): 027701
[3] LIU Yuan, WU Wei-Jing, QIANG Lei, WANG Lei, EN Yun-Fei, LI Bin. Temperature-Dependent Drain Current Characteristics and Low Frequency Noises in Indium Zinc Oxide Thin Film Transistors[J]. Chin. Phys. Lett., 2015, 32(08): 027701
[4] JIA Ze, XU Jian-Long, WU Xiao, ZHANG Ming-Ming, LIOU Juin-J.. A Back-Gated Ferroelectric Field-Effect Transistor with an Al-Doped Zinc Oxide Channel[J]. Chin. Phys. Lett., 2015, 32(02): 027701
[5] GAO Hai-Xia**, HU Rong, YANG Yin-Tang. The Theoretical Investigation and Analysis of High-Performance ZnO Double-Gate Double-Layer Insulator Thin-Film Transistors[J]. Chin. Phys. Lett., 2012, 29(1): 027701
Viewed
Full text


Abstract