Chin. Phys. Lett.  2018, Vol. 35 Issue (2): 027501    DOI: 10.1088/0256-307X/35/2/027501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Fe$^{3+}$-Doped Anatase TiO$_{2}$ Study Prepared by New Sol-Gel Precursors
Bahram Khoshnevisan1, Mohammad Bagher Marami1, Majid Farahmandjou2**
1Department of Physics, Faculty of Science, University of Kashan, Kashan, Islamic Republic of Iran
2Departments of Physics, Varamin Pishva Branch, Islamis Azad University, Varamin, Iran
Cite this article:   
Bahram Khoshnevisan, Mohammad Bagher Marami, Majid Farahmandjou 2018 Chin. Phys. Lett. 35 027501
Download: PDF(4089KB)   PDF(mobile)(4084KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Fe$_{x}$Ti$_{1-x}$O$_{2}$ ($x=0.00$, 0.05, 0.10) nanocomposites are synthesized using a sol-gel method involving an ethanol solvent in the presence of ethylene glycol as the stabilizer, and acetic acid as the chemical reagent. Their structural and optical analyses are studied to reveal their physicochemical properties. Using the x-ray diffractometer (XRD) analysis, the size of the nanoparticles (NPs) is found to be 18–32 nm, where the size of the NPs decreases down to 18 nm when Fe impurity of up to 10% is added, whereas their structure remains unchanged. The results also indicate that the structure of the NPs is tetragonal in the anatase phase. The Fourier transform infrared spectroscopy analysis suggests the presence of a vibration bond (Ti–O) in the sample. The photoluminescence analysis indicates that the diffusion of Fe$^{3+}$ ions into the TiO$_{2}$ matrix results in a decreasing electron–hole recombination, and increases the photocatalytic properties, where the best efficiency appears at an impurity of 10%. The UV-diffuse reflection spectroscopy analysis indicates that with the elevation of iron impurity, the band gap value decreases from 3.47 eV for the pure sample to 2.95 eV for the 10 mol% Fe-doped TiO$_{2}$ NPs.
Received: 04 November 2017      Published: 23 January 2018
PACS:  75.50.Tt (Fine-particle systems; nanocrystalline materials)  
  75.75.Cd (Fabrication of magnetic nanostructures)  
  81.16.-c (Methods of micro- and nanofabrication and processing)  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
  73.63.Bd (Nanocrystalline materials)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/2/027501       OR      https://cpl.iphy.ac.cn/Y2018/V35/I2/027501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Bahram Khoshnevisan
Mohammad Bagher Marami
Majid Farahmandjou
[1]Pfaff G and Reynders P 1999 Chem. Rev. 99 1963
[2]Bin Q, Wu L, Zhang Y, Zeng Q and Zhi J 2010 J. Colloid Interface Sci. 345 181
[3]Brown W D and Granneman W W 1978 Solid-State Electron. 21 837
[4]Matsumoto Y, Murakami M, Shono T, Hasegawa T, Fukumura T, Kawasaki M, Ahmet P, Chikyow T, Koshihara S and Koinuma H 2001 Science 291 854
[5]Kumazawa N, Islam M R and Takeuchi M 1999 J. Electrochem. Chem. 472 137
[6]Carp O, Huisman C L and Reller A 2004 Prog. Solid State Chem. 32 33
[7]Kavan L, Fattakhova D and Krtil P 1999 J. Electrochem. Soc. 146 1375
[8]Bonini N, Carotta M C, Chiorino A, Guidi V, Malagù C, Martinelli G, Paglialonga L and Sacerdoti M 2000 Sens. Actuators B 68 274
[9]Boccuzzi F, Chiorino A, Manzoli M, Andreeva D, Tabakova T, Ilieva L and Iadakiev V 2002 Catal. Today 75 169
[10]Foura G, Chouchou N, Soualah A, Kouachi K, Guidotti M and Robert D 2017 Catalysts 7 344
[11]Wang F, Shen T, Fu Z, Lu Y and Chen C 2018 Nanotechnology 29 035702
[12]Ali T, Tripathi P, Azam A, Raza R, Ahmed A S, Ahmed A and Muneer M 2017 Mater. Res. Express 4 015022
[13]Ramazani M, Farahmandjou M and Firoozabadi T P 2015 Phys. Chem. Res. 3 293
[14]Pulsipher D I, Martin I T and Fisher E R 2010 ACS Appl. Mater. Interfaces 2 1743
[15]Izmajlowicz M A T, Flewitt A J, Milne W I and Morrison N A 2003 J. Appl. Phys. 94 7535
[16]Xu J P et al 2009 Chin. Phys. Lett. 26 097502
[17]Hu X, An T, Zhang M, Sheng G and Fu J 2007 Res. J. Chem. Environ. 11 13
[18]Ali T, Tripathi P, Azam A, Raza W, Ahmed A S, Ahmed A and Muneer M 2017 Mater. Res. Express 4 015022
[19]Yang Y, Yu Y, Wang J, Zheng W and Cao Y 2017 Cryst. Eng. Commun. 19 1100
[20]Ramalingam R J, Arunachalam P, Radhika T, Anju K R, Nimitha K C and Al-Lohedan C H 2017 Int. J. Electrochem. Sci. 12 797
[21]Scherrer P 1918 Göttinger Nachr. Gesell. 2 98
[22]Chen Q, Xue C, Li X and Wang Y 2013 Mater. Sci. Forum 743 367
[23]Khatoon S, Wani I A, Ahmed J, Magdaleno T, Al-Hartomy O A and Ahmad T 2013 Mater. Chem. Phys. 138 519
[24]Siripala W and Tomkieviez M 1982 J. Electrochem. Soc. 129 1240
[25]Beydoun D, Amal R, Low G and McEvoy S 1999 J. Nanopart. Res. 1 439
Related articles from Frontiers Journals
[1] LI Xiao-Qiang, ZHENG Lu, WANG Xu-Fei. In Vivo Magnetic Particle Targeting by Local Gradient Field of Interstitial Seeds Magnetized in an Ex Vivo Uniform Field[J]. Chin. Phys. Lett., 2014, 31(2): 027501
[2] ZHANG Yi, DONG Juan, FENG Er-Xi, LUO Cai-Qin, LIU Qing-Fang, WANG Jian-Bo. Enhanced Giant Magnetoimpedance Effect in Rapid Heat-Treated Fe-Based Amorphous Ribbons[J]. Chin. Phys. Lett., 2013, 30(3): 027501
[3] ZHANG Jing-Jing,GAO Hong-Mei,YAN Yu,BAI Xue,WANG Wen-Quan,SU Feng,DU Xiao-Bo**. Processing YCo5 Permanent Magnetic Submicron Flakes by Surfactant-Assisted High-Energy Ball Milling[J]. Chin. Phys. Lett., 2012, 29(5): 027501
[4] LÜ, Dong-Li, XU Chen. Magnetization Switching in a Small Disk with Shape Anisotropy[J]. Chin. Phys. Lett., 2010, 27(9): 027501
[5] WANG Fei, YAN Yu, YUAN Zhou, BAI Xue, DU Xiao-Bo, WANG Wen-Quan, SU Feng, JIN Han-Min. Permanent Magnetic Properties of Melt-Spun YCo5Cx Ribbons[J]. Chin. Phys. Lett., 2010, 27(6): 027501
[6] GUO Jia-Jun, CHEN Lei, ZHAO Xu, FAN Su-Li, CHEN Wei. Effective Anisotropy in Magnetically Nd2Fe14B/α-Fe Nanocomposite[J]. Chin. Phys. Lett., 2010, 27(5): 027501
[7] M. Farahmandjou, S. A. Sebt, S. S. Parhizgar, P. Aberomand, M. Akhavan. Stability Investigation of Colloidal FePt Nanoparticle Systems by Spectrophotometer Analysis[J]. Chin. Phys. Lett., 2009, 26(2): 027501
[8] FANG Wen-Xiao, HE Zhen-Hui, CHEN Di-Hu, ZHAO Yan-E. A Diffusion Model of Field-Induced Aggregation in Ferrofluid Film[J]. Chin. Phys. Lett., 2008, 25(9): 027501
[9] A.V. Svalov, V.O. Vas'kovskiy, G.V.Kurlyandskaya, J.M. Barandiaran, N.N. Schegoleva, A.N. Sorokin. Magnetic Behaviour of Tb/Si Nanoscale Multilayers with Small Thickness of Rare Earth Layers[J]. Chin. Phys. Lett., 2007, 24(6): 027501
[10] BI Hong, , CHEN Qian-Wang, YOU Feng-Yong, ZHOU Xiao-Li. A Chemical Synthesis of Ferromagnetic Zn0.99Co0.01O Nano-Needles[J]. Chin. Phys. Lett., 2006, 23(7): 027501
[11] A. V. Svalov, V. O. Vas’kovskiy, G. V. Kurlyandskaya, J. M. Barandiaran, I. Orue, N. N. Schegoleva, A. N. Sorokin. Structural Peculiarities and Magnetic Properties of Nanoscale Terbium in Tb/Ti and Tb/Si Multilayers[J]. Chin. Phys. Lett., 2006, 23(1): 027501
[12] ZHANG Ning, BAO Jian-Chun, LI Gang, GENG Tao, CHEN Ji-Kang. Intergranular Tunnelling and Field-Induced Percolation Fluctuation of Granular Composites (La1-zAgzMnO3)/(MnO2/Mn2O3)[J]. Chin. Phys. Lett., 2005, 22(11): 027501
[13] FANG Wen-Xiao, HE Zhen-Hui, XU Xue-Qing, SHEN Hui. Aligned Structures of Fe3O4 Nanoparticles in a Curable Polymer Carrier Induced by a Magnetic Field[J]. Chin. Phys. Lett., 2005, 22(9): 027501
[14] FANG Yi-Kun, CHANG Cheng-Wu, CHANG Wen-Cheng, XIA Ai-Lin, CHEN Qiang, GE Hong-Liang, HAN Bao-Shan. Magnetic and Crystalline Microstructures of Fe--Pt--B Nanocomposite Ribbons[J]. Chin. Phys. Lett., 2005, 22(7): 027501
[15] XU Chen, HUI Pak-Ming, CHOW Chow-Wang, LI Zhen-Ya. Switching Behaviour of Magnetic Particles with Dipolar Interaction[J]. Chin. Phys. Lett., 2005, 22(1): 027501
Viewed
Full text


Abstract