|
Orbital Angular Momentum Generation Using Circular Ring Resonators in Radio Frequency
Fu-Chun Mao, Ming Huang, Cheng-Fu Yang, Ting-Hua Li, Jia-Lin Zhang, Si-Yu Chen
Chin. Phys. Lett. 2018, 35 (2):
020701
.
DOI: 10.1088/0256-307X/35/2/020701
Electromagnetic field generators based on circular ring resonators, whose perimeters are integer times of equivalent wavelength, are well known to have attractive potential for producing radio vortexes carrying orbital angular momentum (OAM). We study the radiation characteristics of the generators based on radiation vector and antenna array theory. The behaviors of radiation patterns, field intensity and phase distribution are investigated in detail, and show classical features of OAM beams. The evolution of the generators performance versus the OAM state is also analyzed. The proposed generators can be realized by all kinds of microwave transmission lines, verified by two different prototypes. The discussions and conclusions drawn in this study are useful and meaningful for the radio OAM generator design.
|
|
Frequency Stabilization of Pulsed Injection-Seeded OPO Based on Optical Heterodyne Technique
Xiao Chen, Xiao-Lei Zhu, Shi-Guang Li, Xiu-Hua Ma, Wei Xie, Ji-Qiao Liu, Wei-Biao Chen, Ren Zhu
Chin. Phys. Lett. 2018, 35 (2):
024201
.
DOI: 10.1088/0256-307X/35/2/024201
A frequency stabilizing system for a pulsed injection seeded 1550 nm optical parametric oscillator (OPO) at 20 Hz repetition rate is demonstrated. The optical heterodyne method is used to measure the frequency difference between the seed laser and the OPO output. Using the frequency difference as the error signal, a proportional-integral controller in combination with a scanner is applied to stably match the OPO cavity length to the seed laser frequency. The root-mean-square (rms) error of the frequency discrimination method is $ < $0.07 MHz according to a 'frequency shifting-chopping-beat' evaluation. The frequency fluctuation of the frequency-stabilized OPO is 0.29 MHz (rms), and the Allan deviation is less than 20 kHz for averaging time of more than 3 s.
|
|
Experimental Observation of Bright and Dark Solitons Mode-Locked with Zirconia-Based Erbium-Doped Fiber Laser
A. M. Markom, S. J. Tan, H. Haris, M. C. Paul, A. Dhar, S. Das, S. W. Harun
Chin. Phys. Lett. 2018, 35 (2):
024203
.
DOI: 10.1088/0256-307X/35/2/024203
We demonstrate the generation of dark and bright solitons with our homemade zirconia-based erbium-doped fiber and graphene oxide (GO) saturable absorber in anomalous dispersion region. The GO is fabricated using an abridged Hummer's method, which is combined with polyethylene oxide to produce a composite film. The film is sandwiched between two optical ferrules and embedded in the laser cavity to enhance its birefringence and nonlinearity. The self-starting bright soliton is easily generated at pump power of 78 mW with the whole length cavity of 14.7 m. The laser produces the bright pulse train with repetition rate, pulse width, pulse energy and central wavelength being 13.9 MHz, 0.6 ps, 2.74 pJ and 1577.46 nm, respectively. Then, by adding the 10 m of single mode fiber into the laser cavity, dark soliton pulse is produced. For the formation of dark pulse train, the measured repetition rate, pulse width, pulse energy and central wavelength are 8.3 MHz, 20 ns and 4.98 pJ and 1596.82 nm, respectively. Both pulses operate in the anomalous region.
|
|
Effects of Grain Boundary Characteristics on Its Capability to Trap Point Defects in Tungsten
Wen-Hao He, Xing Gao, Ning Gao, Ji Wang, Dong Wang, Ming-Huan Cui, Li-Long Pang, Zhi-Guang Wang
Chin. Phys. Lett. 2018, 35 (2):
026101
.
DOI: 10.1088/0256-307X/35/2/026101
As recombination centers of vacancies (Vs) and self-interstitial atoms (SIAs), firstly grain boundaries (GBs) should have strong capability of trapping point defects. In this study, abilities to trap Vs and SIAs of eight symmetric tilt GBs in tungsten are investigated through first-principles calculations. On the one hand, vacancy formation energy $E_{\rm V}^{\rm f}$ rapidly increases then slowly decreases as the hard-sphere radius $r_0$ of the vacancy increases. The value of $E_{\rm V}^{\rm f}$ is the largest when $r_0$ is about 1.38 Å, which is half the distance between the nearest atoms in equilibrium single crystal tungsten. That is, any denser or looser atomic configuration around GBs than that in bulk is helpful to form a vacancy. On the other hand, SIA formation energy $E_{\rm SIA}^{\rm f}$ at GBs decreases monotonically with increasing the hard-sphere radius of the interstitial sites, which indicates that GBs with larger interstitial sites have stronger ability to trap SIAs. Based on the data obtained for GBs investigated in this study, it is found that the ability to trap Vs increases as the GB energy increases, and the capability of trapping SIAs linearly increases as the excess volume of GB increases. Due to its lowest GB energy and smallest excess volume among all GBs studied, twin GB $\sum$3(110)[111] has the weakest capability to trap both Vs and SIAs.
|
|
Structural Distortion and Defects in Ti$_{3}$AlC$_{2}$ irradiated by Fe and He Ions
Li-Long Pang, Bing-Sheng Li, Tie-Long Shen, Xing Gao, Xue-Song Fang, Ning Gao, Cun-Feng Yao, Kong-Fang Wei, Ming-Huan Cui, Jian-Rong Sun, Hai-Long Chang, Wen-Hao He, Qing Huang, Zhi-Guang Wang
Chin. Phys. Lett. 2018, 35 (2):
026102
.
DOI: 10.1088/0256-307X/35/2/026102
Ti$_{3}$AlC$_{2}$ samples are irradiated in advance by 3.5 MeV Fe-ion to the fluence of 1.0$\times$10$^{16}$ ion/cm$^{2}$, and then are implanted by 500 keV He-ion with the fluence of 1.0$\times$10$^{17}$ ion/cm$^{2}$ at room temperature. The irradiated samples are investigated by grazing incidence x-ray diffraction (GIXRD) and transmission electron microscopy (TEM). GIXRD results show serious structural distortion, but without amorphization in the irradiated samples. Fe-ion irradiation and He-ion implantation create much more serious structural distortion than single Fe-ion irradiation. TEM results reveal that there are a large number of defect clusters in the damage region, and dense spherical He bubbles appear in the He depositional region. It seems that the pre-damage does not influence the growth of He bubbles, but He-ion implantation influences the pre-created defect configurations.
|
|
Influence of Flexoelectric Effect on Director Alignment of Nematic Liquid Crystals in Axial Arrangement Cylindrical Cells
Hong-Hong Liu, Yan-Jun Zhang, Huai-Rui Yue, Li-Zhi Zhu, Rui-Xia Yang
Chin. Phys. Lett. 2018, 35 (2):
026103
.
DOI: 10.1088/0256-307X/35/2/026103
A positive nematic liquid crystal (5CB) sample is confined in cylindrical cells under strong or weak axial anchoring boundary conditions when a radial nonuniform low-frequency electric field is applied and the flexoelectric effect is taken into account. Based on the Frank elastic free energy, the surface energy of the Rapini–Papoular approximation, the polarization free energy and the flexoelectric free energy caused by electric field, we obtain the free energy density of the nematic and solve the corresponding Euler–Lagrange equation numerically. We investigate the director distribution, the critical voltage and the critical exponent of nematic liquid crystal in cylindrical cells. It follows that the critical exponent is the classical one. It is also shown that the critical voltage in the system is affected by the flexoelectric effect, the geometric effect and radial weak anchoring effect on the cylindrical surfaces. A new type of director transition caused by the flexoelectric effect, the dielectric coupling effect and the radial weak anchoring effect is found.
|
|
Surface Structure and Reconstructions of HgTe (111) Surfaces
Xin-Yi Yang, Guan-Yong Wang, Chen-Xiao Zhao, Zhen Zhu, Lu Dong, Ai-Min Li, Yang-Yang Lv, Shu-Hua Yao, Yan-Bin Chen, Dan-Dan Guan, Yao-Yi Li, Hao Zheng, Dong Qian, Canhua Liu, Yu-Lin Chen, Jin-Feng Jia
Chin. Phys. Lett. 2018, 35 (2):
026802
.
DOI: 10.1088/0256-307X/35/2/026802
HgTe (111) surface is comprehensively studied by scanning tunneling microscopy/spectroscopy (STS). In addition to the primitive $(1\times 1)$ hexagonal lattice, six reconstructed surface structures are observed: $(2\times 2)$, $2\times 1$, $4\times 1$, $3\times \sqrt{3}$, $2\sqrt{2}\times 2$ and $\sqrt{11}\times 2$. The $(2\times 2)$ reconstructed lattice maintains the primitive hexagonal symmetry, while the lattices of the other five reconstructions are rectangular. Moreover, the topographic features of the $3\times \sqrt{3}$ reconstruction are bias dependent, indicating that they have both topographic and electronic origins. The STSs obtained at different reconstructed surfaces show a universal dip feature with size $\sim $100 mV, which may be attributed to the surface distortion. Our results reveal the atomic structure and complex reconstructions of the cleaved HgTe (111) surfaces, which paves the way to understand the rich properties of HgTe crystal.
|
|
Interaction-Induced Characteristic Length in Strongly Many-Body Localized Systems
Rong-Qiang He, Zhong-Yi Lu
Chin. Phys. Lett. 2018, 35 (2):
027101
.
DOI: 10.1088/0256-307X/35/2/027101
A complete set of local integrals of motion (LIOM) is a key concept for describing many-body localization (MBL), which explains a variety of intriguing phenomena in MBL systems. For example, LIOM constrain the dynamics and result in ergodicity violation and breakdown of the eigenstate thermalization hypothesis. However, it is difficult to find a complete set of LIOM explicitly and accurately in practice, which impedes some quantitative structural characterizations of MBL systems. Here we propose an accurate numerical method for constructing LIOM, discover through the LIOM an interaction-induced characteristic length $\xi_+$, and prove a 'quasi-product-state' structure of the eigenstates with that characteristic length $\xi_+$ for MBL systems. More specifically, we find that there are two characteristic lengths in the LIOM. The first one is governed by disorder and is of Anderson-localization nature. The second one is induced by interaction but shows a discontinuity at zero interaction, showing a nonperturbative nature. We prove that the entanglement and correlation in any eigenstate extend not longer than twice the second length and thus the eigenstates of the system are the quasi-product states with such a localization length.
|
|
Effect of Mg-Preflow for p-AlGaN Electron Blocking Layer on the Electroluminescence of Green LEDs with V-Shaped Pits
Ai-Xing Li, Chun-Lan Mo, Jian-Li Zhang, Xiao-Lan Wang, Xiao-Ming Wu, Guang-Xu Wang, Jun-Lin Liu, Feng-Yi Jiang
Chin. Phys. Lett. 2018, 35 (2):
027301
.
DOI: 10.1088/0256-307X/35/2/027301
InGaN-based green light-emitting diodes (LEDs) with and without Mg-preflow before the growth of p-AlGaN electron blocking layer (EBL) are investigated experimentally. A higher Mg doping concentration is achieved in the EBL after Mg-preflow treatment, effectively alleviating the commonly observed efficiency collapse and electrons overflowing at cryogenic temperatures. However, unexpected decline in quantum efficiency is observed after Mg-preflow treatment at room temperature. Our conclusions are drawn such that the efficiency decline is probably the result of different emission positions. Higher Mg doping concentration in the EBL after Mg-preflow treatment will make it easier for a hole to be injected into multiple quantum wells with emission closer to p-GaN side through the $c$-plane rather than the V-shape pits, which is not favorable to luminous efficiency due to the preferred occurrence of accumulated strain relaxation and structural defects in upper QWs closer to p-GaN. Within this framework, apparently disparate experimental observations regarding electroluminescence properties, in this work, are well reconciled.
|
|
Observation of Tunneling Gap in Epitaxial Ultrathin Films of Pyrite-Type Copper Disulfide
Chong Liu, Haohao Yang, Can-Li Song, Wei Li, Ke He, Xu-Cun Ma, Lili Wang, Qi-Kun Xue
Chin. Phys. Lett. 2018, 35 (2):
027303
.
DOI: 10.1088/0256-307X/35/2/027303
We report scanning tunneling microscopy investigation on epitaxial ultrathin films of pyrite-type copper disulfide. Layer-by-layer growth of CuS$_{2}$ films with a preferential orientation of (111) on SrTiO$_{3}$(001) and Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8+\delta}$ substrates is achieved by molecular beam epitaxy growth. For ultrathin films on both kinds of substrates, we observe symmetric tunneling gap around the Fermi level that persists up to $\sim$15 K. The tunneling gap degrades with either increasing temperature or increasing thickness, suggesting new matter states at the extreme two-dimensional limit.
|
|
Fe$^{3+}$-Doped Anatase TiO$_{2}$ Study Prepared by New Sol-Gel Precursors
Bahram Khoshnevisan, Mohammad Bagher Marami, Majid Farahmandjou
Chin. Phys. Lett. 2018, 35 (2):
027501
.
DOI: 10.1088/0256-307X/35/2/027501
Fe$_{x}$Ti$_{1-x}$O$_{2}$ ($x=0.00$, 0.05, 0.10) nanocomposites are synthesized using a sol-gel method involving an ethanol solvent in the presence of ethylene glycol as the stabilizer, and acetic acid as the chemical reagent. Their structural and optical analyses are studied to reveal their physicochemical properties. Using the x-ray diffractometer (XRD) analysis, the size of the nanoparticles (NPs) is found to be 18–32 nm, where the size of the NPs decreases down to 18 nm when Fe impurity of up to 10% is added, whereas their structure remains unchanged. The results also indicate that the structure of the NPs is tetragonal in the anatase phase. The Fourier transform infrared spectroscopy analysis suggests the presence of a vibration bond (Ti–O) in the sample. The photoluminescence analysis indicates that the diffusion of Fe$^{3+}$ ions into the TiO$_{2}$ matrix results in a decreasing electron–hole recombination, and increases the photocatalytic properties, where the best efficiency appears at an impurity of 10%. The UV-diffuse reflection spectroscopy analysis indicates that with the elevation of iron impurity, the band gap value decreases from 3.47 eV for the pure sample to 2.95 eV for the 10 mol% Fe-doped TiO$_{2}$ NPs.
|
|
Ultrafast Terahertz Probes of Charge Transfer and Recombination Pathway of CH$_{3}$NH$_{3}$PbI$_{3}$ Perovskites
Hui-Jie Yan, Zhi-Liang Ku, Xue-Feng Hu, Wan-Ying Zhao, Min-Jian Zhong, Qi-Biao Zhu, Xian Lin, Zuan-Ming Jin, Guo-Hong Ma
Chin. Phys. Lett. 2018, 35 (2):
028401
.
DOI: 10.1088/0256-307X/35/2/028401
We use transient terahertz photoconductivity measurements to demonstrate that upon optical excitation of CH$_{3}$NH$_{3}$PbI$_{3}$ perovskite, the hole transfer from CH$_{3}$NH$_{3}$PbI$_{3}$ into the organic hole-transporting material (HTM) Spiro-OMeTAD occurs on a sub-picosecond timescale. Second-order recombination is the dominant decay pathway at higher photo-excitation fluences as observed in neat CH$_{3}$NH$_{3}$PbI$_{3}$ films. In contrast, under similar experimental conditions, second-order recombination weakly contributes the relatively slow recombination between the electrons in the perovskite and the injected holes in HTM, as a loss mechanism at the CH$_{3}$NH$_{3}$PbI$_{3}$/Spiro-OMeTAD interface. Our results offer insights into the intrinsic photophysics of CH$_{3}$NH$_{3}$PbI$_{3}$-based perovskites with direct implications for photovoltaic devices and optoelectronic applications.
|
26 articles
|