Chin. Phys. Lett.  2018, Vol. 35 Issue (2): 028401    DOI: 10.1088/0256-307X/35/2/028401
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Ultrafast Terahertz Probes of Charge Transfer and Recombination Pathway of CH$_{3}$NH$_{3}$PbI$_{3}$ Perovskites
Hui-Jie Yan1, Zhi-Liang Ku2, Xue-Feng Hu1, Wan-Ying Zhao1, Min-Jian Zhong1, Qi-Biao Zhu1, Xian Lin1, Zuan-Ming Jin1**, Guo-Hong Ma1**
1Department of Physics, Shanghai University, Shanghai 200444
2State Key Laboratory of Advanced Technology For Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070
Cite this article:   
Hui-Jie Yan, Zhi-Liang Ku, Xue-Feng Hu et al  2018 Chin. Phys. Lett. 35 028401
Download: PDF(1181KB)   PDF(mobile)(1165KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We use transient terahertz photoconductivity measurements to demonstrate that upon optical excitation of CH$_{3}$NH$_{3}$PbI$_{3}$ perovskite, the hole transfer from CH$_{3}$NH$_{3}$PbI$_{3}$ into the organic hole-transporting material (HTM) Spiro-OMeTAD occurs on a sub-picosecond timescale. Second-order recombination is the dominant decay pathway at higher photo-excitation fluences as observed in neat CH$_{3}$NH$_{3}$PbI$_{3}$ films. In contrast, under similar experimental conditions, second-order recombination weakly contributes the relatively slow recombination between the electrons in the perovskite and the injected holes in HTM, as a loss mechanism at the CH$_{3}$NH$_{3}$PbI$_{3}$/Spiro-OMeTAD interface. Our results offer insights into the intrinsic photophysics of CH$_{3}$NH$_{3}$PbI$_{3}$-based perovskites with direct implications for photovoltaic devices and optoelectronic applications.
Received: 21 September 2017      Published: 23 January 2018
PACS:  84.60.Jt (Photoelectric conversion)  
  78.47.-p (Spectroscopy of solid state dynamics)  
  07.57.Ty (Infrared spectrometers, auxiliary equipment, and techniques)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11674213, 11604202 and 61735010, the Young Eastern Scholar at Shanghai Institutions of Higher Learning under Grant No QD2015020, the Universities Young Teachers Training Funding Program under Grant No ZZSD15098, and the 'Chen Guang' Project of Shanghai Municipal Education Commission and Shanghai Education Development Foundation under Grant No 16CG45.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/2/028401       OR      https://cpl.iphy.ac.cn/Y2018/V35/I2/028401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hui-Jie Yan
Zhi-Liang Ku
Xue-Feng Hu
Wan-Ying Zhao
Min-Jian Zhong
Qi-Biao Zhu
Xian Lin
Zuan-Ming Jin
Guo-Hong Ma
[1]Lee M M, Teuscher J, Miyasaka T et al 2012 Science 338 643
[2]Green M A, Ho-Baillie A and Snaith H J 2014 Nat. Photon. 8 506
[3]Liu M, Johnston M B and Snaith H J 2013 Nature 501 395
[4]Nie W, Tsai H, Asadpour R et al 2015 Science 347 522
[5]Manser J S, Christians J A and Kamat P V 2016 Chem. Rev. 116 21
[6]Lin Q, Armin A, Nagiri R C R et al 2015 Nat. Photon. 9 106
[7]Stranks S D, Eperon G E, Grancini G et al 2013 Science 342 341
[8]Xing G, Mathews N, Sun S et al 2013 Science 342 344
[9]Oga H, Saeki A, Ogomi Y et al 2014 J. Am. Chem. Soc. 136 13818
[10]Yamada Y, Nakamura T, Endo M et al 2014 J. Am. Chem. Soc. 136 11610
[11]Brenner T M, Egger D A and Kronik L 2016 Int. Mater. Rev. 1 15007
[12]Yin W J, Shi T and Yan Y 2014 Appl. Phys. Lett. 104 063903
[13]Shi D, Adinolfi V, Comin R et al 2015 Science 347 519
[14]Yang Y, Yan Y, Yang M et al 2015 Nat. Commun. 6 7961
[15]Wehrenfennig C, Eperon G E, Johnston M B et al 2014 Adv. Mater. 26 1584
[16]Corani A, Li M H, Shen P S et al 2016 J. Phys. Chem. Lett. 7 1096
[17]Marchioro A, Teuscher J, Friedrich D et al 2014 Nat. Photon. 8 250
[18]Yang Y, Yang M, Li Z et al 2015 J. Phys. Chem. Lett. 6 4688
[19]Manser J S and Kamat P V 2014 Nat. Photon. 8 737
[20]Brauer J C, Lee Y, Nazeeruddin M K et al 2016 J. Mater. Chem. C 4 5922
[21]Wehrenfennig C, Liu M, Snaith H J et al 2014 J. Phys. Chem. Lett. 5 1300
[22]Deschler F, Price M, Pathak S et al 2014 J. Phys. Chem. Lett. 5 1421
[23]Fang H, Wang F, Adjokatse S et al 2016 Light: Sci. Appl. 5 e16056
[24]Lang L, Yang J H, Liu H R et al 2014 Phys. Lett. A 378 290
[25]Ulbricht R, Hendry E, Shan J et al 2011 Rev. Mod. Phys. 83 543
[26]Milot R L, Eperon G E, Snaith H J et al 2015 Adv. Funct. Mater. 25 6218
[27]Chan L O V, Salim T, Kadro J et al 2015 Nat. Commun. 6 7903
[28]Wehrenfennig C, Liu M, Snaith H J et al 2014 Energy Environ. Sci. 7 2269
[29]Valverde-Chávez D A, Jr. Ponseca C S, Stoumpos C C et al 2015 Energy Environ. Sci. 8 3700
[30]Jr. Ponseca C S, Savenije T J, Abdellah M et al 2014 J. Am. Chem. Soc. 136 5189
[31]Lui K P H and Hegmann F A 2001 Appl. Phys. Lett. 78 3478
[32]Yettapu G R, Talukdar D, Sarkar S et al 2016 Nano Lett. 16 4838
[33]Jr. Ponseca C S, Hutter E M, Piatkowski P et al 2015 J. Am. Chem. Soc. 137 16043
[34]Snaith H J and Grätzel M 2007 Adv. Mater. 19 3643
[35]Samrana K, Mohammad K N, Michael G et al 2014 Angew. Chem. Int. Ed. 53 2812
[36]Jin Z, Gehrig D, Dyer-Smith C et al 2014 J. Phys. Chem. Lett. 5 3662
[37]Dicker G, Haas M P and Siebbeles L D A 2005 Phys. Rev. B 71 155204
[38]Sheng C, Zhang C, Zhai Y et al 2015 Phys. Rev. Lett. 114 116601
[39]D'Innocenzo V, Grancini G, Alcocer M J et al 2014 Nat. Commun. 5 3586
[40]de Quilettes D W, Vorpahl S M, Stranks S D et al 2015 Science 348 683
[41]Han X W, Hou L, Yang L et al 2016 Chin. Phys. Lett. 33 120701
[42]Fan Z F, Tan Z Y, Wan W J et al 2017 Acta Phys. Sin. 66 087801 (in Chinese)
Related articles from Frontiers Journals
[1] Zihan Qu, Fei Ma, Yang Zhao, Xinbo Chu, Shiqi Yu, and Jingbi You. Updated Progresses in Perovskite Solar Cells[J]. Chin. Phys. Lett., 2021, 38(10): 028401
[2] Wen-Jian Shi, Ze-Ming Kan, Chuan-Hui Cheng, Wen-Hui Li, Hang-Qi Song, Meng Li, Dong-Qi Yu, Xiu-Yun Du, Wei-Feng Liu, Sheng-Ye Jin, and Shu-Lin Cong. Antimony Selenide Thin Film Solar Cells with an Electron Transport Layer of Alq$_{3}$[J]. Chin. Phys. Lett., 2020, 37(10): 028401
[3] Gen Yue, Zhen Deng, Sen Wang, Ran Xu, Xinxin Li, Ziguang Ma, Chunhua Du, Lu Wang, Yang Jiang, Haiqiang Jia, Wenxin Wang, Hong Chen. Absorption Enhancement of Silicon Solar Cell in a Positive-Intrinsic-Negative Junction[J]. Chin. Phys. Lett., 2019, 36(5): 028401
[4] Wan-Ying Zhao, Zhi-Liang Ku, Li-Ping Lv, Xian Lin, Yong Peng, Zuan-Ming Jin, Guo-Hong Ma, Jian-Quan Yao. Ultrafast Carrier Dynamics and Terahertz Photoconductivity of Mixed-Cation and Lead Mixed-Halide Hybrid Perovskites[J]. Chin. Phys. Lett., 2019, 36(2): 028401
[5] Rui Wu, Jun-Ling Wang, Gang Yan, Rong Wang. Photoluminescence Analysis of Electron Damage for Minority Carrier Diffusion Length in GaInP/GaAs/Ge Triple-Junction Solar Cells[J]. Chin. Phys. Lett., 2018, 35(4): 028401
[6] Jun-Ling Wang, Tian-Cheng Yi, Yong Zheng, Rui Wu, Rong Wang. Temperature-Dependent Photoluminescence Analysis of 1.0MeV Electron Irradiation-Induced Nonradiative Recombination Centers in n$^{+}$–p GaAs Middle Cell of GaInP/GaAs/Ge Triple-Junction Solar Cells[J]. Chin. Phys. Lett., 2017, 34(7): 028401
[7] Du-Xiang Wang, Ming-Hui Song, Jing-Feng Bi, Wen-Jun Chen, Sen-Lin Li, Guan-Zhou Liu, Ming-Yang Li, Chao-Yu Wu. Enhanced Efficiency of Metamorphic Triple Junction Solar Cells for Space Applications[J]. Chin. Phys. Lett., 2017, 34(6): 028401
[8] Yong Zheng, Tian-Cheng Yi, Jun-Ling Wang, Peng-Fei Xiao, Rong Wang. Radiation Damage Analysis of Individual Subcells for GaInP/GaAs/Ge Solar Cells Using Photoluminescence Measurements[J]. Chin. Phys. Lett., 2017, 34(2): 028401
[9] Wen-Gui Wang, Li Zhu, Yu-Yan Weng, Wen Dong. TiO$_{2}$-Loaded WO$_{3}$ Composite Films for Enhancement of Photocurrent Density[J]. Chin. Phys. Lett., 2017, 34(2): 028401
[10] Jun-Na Zhang, Lei Wang, Zhun Dai, Xun Tang, You-Bo Liu, De-Ren Yang. The 18.3% Silicon Solar Cells with Nano-Structured Surface and Rear Emitter[J]. Chin. Phys. Lett., 2017, 34(2): 028401
[11] Yong Zheng, Tian-Cheng Yi, Peng-Fei Xiao, Juan Tang, Rong Wang. Photoluminescence Analysis of Injection-Enhanced Annealing of Electron Irradiation-Induced Defects in GaAs Middle Cells for Triple-Junction Solar Cells[J]. Chin. Phys. Lett., 2016, 33(05): 028401
[12] Talib Hussain, Hui-Qi Ye, Dong Xiao. Excess Carrier Lifetime Improvement in c-Si Solar Cells by YAG:Ce$^{3+}$-Yb$^{3+}$[J]. Chin. Phys. Lett., 2016, 33(05): 028401
[13] SUN Ding, GE Yang, XU Sheng-Zhi, ZHANG Li, LI Bao-Zhang, WANG Guang-Cai, WEI Chang-Chun, ZHAO Ying, ZHANG Xiao-Dan. Improvement of the Open Circuit Voltage of CZTSe Thin-Film Solar Cells by Surface Sulfurization Using SnS[J]. Chin. Phys. Lett., 2015, 32(12): 028401
[14] LI Li, YU Dong, WU Shi-Liang, WANG Wei, LIU Wen-Chao, WU Xiao-Shan, ZHANG Feng-Ming. Conversion Efficiency Enhancement of Multi-crystalline Si Solar Cells by Using a Micro-structured Junction[J]. Chin. Phys. Lett., 2015, 32(11): 028401
[15] WANG Fei-Long, DAI Bin, LIU Xue-Feng, SUN Yi-Ning, SUN Zhi-Bin, YU Qiang, ZHAI Guang-Jie. Containerless Heating Process of a Deeply Undercooled Metal Droplet by Electrostatic Levitation[J]. Chin. Phys. Lett., 2015, 32(11): 028401
Viewed
Full text


Abstract