CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Thickness Effect on (La$_{0.26}$Bi$_{0.74}$)$_{2}$Ti$_{4}$O$_{11}$ Thin-Film Composition and Electrical Properties |
Hui-Zhen Guo, An-Quan Jiang** |
State Key Laboratory of ASIC & System, School of Microelectronics, Fudan University, Shanghai 200433
|
|
Cite this article: |
Hui-Zhen Guo, An-Quan Jiang 2018 Chin. Phys. Lett. 35 026801 |
|
|
Abstract Highly oriented (00l) (La$_{0.26}$Bi$_{0.74}$)$_{2}$Ti$_{4}$O$_{11}$ thin films are deposited on (100) SrTiO$_{3}$ substrates using the pulsed laser deposition technique. The grains form a texture of bar-like arrays along SrTiO$_{3}$ $\langle 110\rangle$ directions for the film thickness above 350 nm, in contrast to spherical grains for the reduced film thickness below 220 nm. X-ray diffraction patterns show that the highly ordered bar-like grains are the ensemble of two lattice-matched monoclinic (La,Bi)$_{4}$Ti$_{3}$O$_{12}$ and TiO$_{2}$ components above a critical film thickness. Otherwise, the phase decomposes into the random mixture of Bi$_{2}$Ti$_{2}$O$_{7}$ and Bi$_{4}$Ti$_{3}$O$_{4}$ spherical grains in thinner films. The critical thickness can increase up to 440 nm as the films are deposited on LaNiO$_{3}$-buffered SrTiO$_{3}$ substrates. The electrical measurements show the dielectric enhancement of the multi-components, and comprehensive charge injection into interfacial traps between (La,Bi)$_{4}$Ti$_{3}$O$_{12}$ and TiO$_{2}$ components occurs under the application of a threshold voltage for the realization of high-charge storage.
|
|
Received: 25 October 2017
Published: 23 January 2018
|
|
PACS: |
68.65.-k
|
(Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)
|
|
77.80.-e
|
(Ferroelectricity and antiferroelectricity)
|
|
77.84.-s
|
(Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)
|
|
67.80.dm
|
(Films)
|
|
|
Fund: Supported by the Basic Research Project of Shanghai Science and Technology Innovation Action under Grant No 17JC1400300, the National Key Basic Research Program of China under Grant No 2014CB921004, the National Natural Science Foundation of China under Grant No 61674044, and the Program of Shanghai Subject Chief Scientist under Grant No 17XD1400800. |
|
|
[1] | Subbarao E C 1962 J. Am. Ceram. Soc. 45 564 | [2] | Kahlenberg V and Bohm H 1994 J. Phys.: Condens. Matter 6 6221 | [3] | Kahlenberg V and Bohm H 1995 Acta Crystallogr. Sect. B 51 11 | [4] | Buscaglia M T, Sennour M, Buscaglia V, Bottino C, Kalyani V and Nanni P 2011 Cryst. Growth Des. 11 1394 | [5] | Jiang A Q, Cheng Z H, Cheng F, Zhou Y L, He M and Yang G Z 2001 Phys. Rev. B 63 104102 | [6] | Jiang A Q, Hu Z X and Zhang L D 1999 J. Appl. Phys. 85 1739 | [7] | Liu J, Duan C G, Yin W G, Mei W N, Smith R W and Hardy J R 2003 J. Chem. Phys. 119 2812 | [8] | Meng J F, Katiyar R S and Zou G T 1997 J. Raman Spectrosc. 28 797 | [9] | Jiang A Q, Hu Z X and Zhang L D 1999 Appl. Phys. Lett. 74 114 | [10] | Black C T and Welser J J 1999 IEEE Trans. Electron Devices 46 776 | [11] | Hardy A, D'Haen J, Goux L, Dirk, Marlies, Rul H V and Mullens J 2007 Chem. Mater. 19 2994 | [12] | Lee B T and Hwang C S 2000 Appl. Phys. Lett. 77 124 | [13] | Vendik O G, Zubko S P and Ter-Martirosayn L T 1998 Appl. Phys. Lett. 73 37 | [14] | Pertsev N A, Zembilgotov A G and Tagantsev A K 1998 Phys. Rev. Lett. 80 1988 | [15] | Park B H, Kang B S, Bu S D, Noh T W, Lee J and Jo W 1999 Nature 401 682 | [16] | Yang X N, Huang B B, Wang H B, Shang S H, Yao W F and Wei J Y 2004 J. Cryst. Growth 270 98 | [17] | Mizutani Y, Kiguchi T, Konno T J, Funakubo H and Uchida H 2010 Jpn. J. Appl. Phys. 49 09MA02 | [18] | Chu C M and Lin P 1997 Appl. Phys. Lett. 70 249 | [19] | Nakamura T, Muhammet R, Shimizu M and Shiosaki T 1993 Jpn. J. Appl. Phys. Part. 32 4086 | [20] | Merka O, Bahnemann D W and Wark M 2014 Catal. Today 225 102 | [21] | Borghols W J H, Wagemaker M, Lafont U, Kelder E M and Mulder F M 2008 Chem. Mater. 20 2949 | [22] | Lardhi S, Noureldine D, Harb M, Ziani A, Cavallo L and Takanabe K 2016 J. Chem. Phys. 144 134702 | [23] | Theis C D, Yeh J, Schlom D G, Hawley M E, Brown G W, Jiang J C and Pan X Q 1998 Appl. Phys. Lett. 72 2817 | [24] | Shin H, De Guire M R and Heuer A H 1998 J. Appl. Phys. 83 3311 | [25] | Ha H K, Yoshimoto M, Koinuma H, Moon B K and Ishiwara H 1996 Appl. Phys. Lett. 68 2965 | [26] | Shimada S, Kodaira K and Matsushita T 1977 J. Cryst. Growth 41 317 | [27] | Dobal P S and Katiyar R S 2002 J. Raman Spectrosc. 33 405 | [28] | Idink H, Srikanth V, White W B and Subbarao E C 1994 J. Appl. Phys. 76 1819 | [29] | Wu Y, Zhang D, Yu J and Wang Y 2009 Mater. Chem. Phys. 113 422 | [30] | Marchand R, Brohan L and Tournoux M 1980 Mater. Res. Bull. 15 1129 | [31] | Shen M R, Ge S B and Cao W W 2001 J. Phys. D 34 2935 | [32] | Jiang A Q, Chen Z H, Zhou Y L and Yang G Z 2001 Solid State Commun. 120 65 | [33] | Csikor F F, Motz C, Weygand D, Zaiser M and Zapperi S 2007 Science 318 251 | [34] | Fouskova A and Cross L E 1970 J. Appl. Phys. 41 2834 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|