CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Surface Structure and Reconstructions of HgTe (111) Surfaces |
Xin-Yi Yang1, Guan-Yong Wang1, Chen-Xiao Zhao1, Zhen Zhu1, Lu Dong1, Ai-Min Li1, Yang-Yang Lv2, Shu-Hua Yao2, Yan-Bin Chen3, Dan-Dan Guan1,5, Yao-Yi Li1,5, Hao Zheng1,5, Dong Qian1,5, Canhua Liu1,5, Yu-Lin Chen4, Jin-Feng Jia1,5** |
1Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 2National Laboratory of Solid State Microstructures & Department of Materials Science and Engineering, Nanjing University, Nanjing 210093 3National Laboratory of Solid State Microstructures & Department of Physics, Nanjing University, Nanjing 210093 4Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK 5Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093
|
|
Cite this article: |
Xin-Yi Yang, Guan-Yong Wang, Chen-Xiao Zhao et al 2018 Chin. Phys. Lett. 35 026802 |
|
|
Abstract HgTe (111) surface is comprehensively studied by scanning tunneling microscopy/spectroscopy (STS). In addition to the primitive $(1\times 1)$ hexagonal lattice, six reconstructed surface structures are observed: $(2\times 2)$, $2\times 1$, $4\times 1$, $3\times \sqrt{3}$, $2\sqrt{2}\times 2$ and $\sqrt{11}\times 2$. The $(2\times 2)$ reconstructed lattice maintains the primitive hexagonal symmetry, while the lattices of the other five reconstructions are rectangular. Moreover, the topographic features of the $3\times \sqrt{3}$ reconstruction are bias dependent, indicating that they have both topographic and electronic origins. The STSs obtained at different reconstructed surfaces show a universal dip feature with size $\sim $100 mV, which may be attributed to the surface distortion. Our results reveal the atomic structure and complex reconstructions of the cleaved HgTe (111) surfaces, which paves the way to understand the rich properties of HgTe crystal.
|
|
Received: 23 October 2017
Published: 23 January 2018
|
|
PACS: |
68.35.B-
|
(Structure of clean surfaces (and surface reconstruction))
|
|
68.35.bg
|
(Semiconductors)
|
|
68.37.Ef
|
(Scanning tunneling microscopy (including chemistry induced with STM))
|
|
68.47.Fg
|
(Semiconductor surfaces)
|
|
|
Fund: Supported by the National Key Research and Development Program of China under Grant Nos 2016YFA0301003 and 2016YFA0300403, and the National Natural Science Foundation of China under Grant Nos 11521404, 11634009, U1632102, 11504230, 11674222, 11574202, 11674226, 11574201 and U1632272. |
|
|
[1] | Wu X G 2016 Chin. Phys. Lett. 33 027303 | [2] | Moore J 2009 Nat. Phys. 5 378 | [3] | Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045 | [4] | Moore J E 2010 Nature 464 194 | [5] | Brune C, Liu C X, Novik E G, Hankiewicz E M, Buhmann H et al 2011 Phys. Rev. Lett. 106 126803 | [6] | Crauste O, Ohtsubo Y, Ballet P, Delplace P A L and Carpentier D et al 2013 arXiv:1307.2008 | [7] | Oostinga J B, Maier L, Schüffelgen P, Knott D and Ames C et al 2013 Phys. Rev. X 3 021007 | [8] | Ren J, Bian G, Fu L, Liu C, Wang T et al 2014 Phys. Rev. B 90 205211 | [9] | Liu C, Bian G, Chang T R, Wang K, Xu S Y et al 2015 Phys. Rev. B 92 115436 | [10] | Lv M, Wang R, Wei L, Yu G, Lin T et al 2016 J. Appl. Phys. 120 115304 | [11] | Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801 | [12] | Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057 | [13] | Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757 | [14] | König M, Wiedmann S, Brüne C, Roth A, Buhmann H et al 2007 Science 318 766 | [15] | Roth A, Brüne C, Buhmann H, Molenkamp L W, Maciejko J et al 2009 Science 325 294 | [16] | König M, Buhmann H, W Molenkamp L, Hughes T, Liu C X et al 2008 J. Phys. Soc. Jpn. 77 031007 | [17] | Cheng Z, Chen R and Zhou B 2015 Chin. Phys. B 24 067304 | [18] | Guo H M, Zhang X L and Feng S P 2012 Chin. Phys. B 21 117301 | [19] | Zou Y L and Song J T 2013 Chin. Phys. B 22 037304 | [20] | Fu L, Kane C L and Mele E J 2007 Phys. Rev. Lett. 98 106803 | [21] | Dai X, Hughes T L, Qi X L, Fang Z and Zhang S C 2008 Phys. Rev. B 77 125319 | [22] | Wu S C, Yan B and Felser C 2014 Europhys. Lett. 107 57006 | [23] | Ruan J, Jian S K, Yao H, Zhang H, Zhang S C and Xing D 2016 Nat. Commun. 7 11136 | [24] | Schick J T, Bose S M and Chen A B 1989 Phys. Rev. B 40 7825 | [25] | Schulman J and McGill T 1979 Appl. Phys. Lett. 34 663 | [26] | Chang Y, Grein C H, Zhao J, Becker C R, Flatte M E et al 2008 Appl. Phys. Lett. 93 192111 | [27] | Guldner Y, Bastard G, Vieren J, Voos M, Faurie J and Million A 1983 Phys. Rev. Lett. 51 907 | [28] | Maier L, Oostinga J B, Knott D, Brune C, Virtanen P et al 2012 Phys. Rev. Lett. 109 186806 | [29] | Oehling S, Ehinger M, Gerhard T, Becker C R, Landwehr G et al 1998 Appl. Phys. Lett. 73 3205 | [30] | Oehling S, Ehinger M, Spahn W, Waag A, Becker C R and Landwehr G 1996 J. Appl. Phys. 79 748 | [31] | Oura K, Lifshits V G, Saranin A A, Zotov A V and Katayama M 2003 Surface Science (Berlin: Springer) chap 8 p 171 | [32] | Yan S C, Xie N, Gong H Q, Sun Q, Guo Y, Shan X Y and Lu X H 2012 Chin. Phys. Lett. 29 046803 | [33] | Li D F, Guo Z C, Li B L, Dong H N and Xiao H Y 2011 Chin. Phys. Lett. 28 086802 | [34] | Toshu A, Masamichi Y, Izumi O and Kazuyuki U 2000 Phys. Rev. B 61 3006 | [35] | Yamamoto Y 1994 Phys. Rev. B 50 8534 | [36] | Virot F, Hayn R, Richter M and van den Brink J 2013 Phys. Rev. Lett. 111 146803 | [37] | Lay M D and Stickney J L 2004 J. Electrochem. Soc. 151 C431 | [38] | Neureiter H, Tatarenko S, Spranger S and Sokolowski M 2000 Phys. Rev. B 62 2542 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|