Chin. Phys. Lett.  2018, Vol. 35 Issue (2): 026501    DOI: 10.1088/0256-307X/35/2/026501
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Effect of Nickel Distributions Embedded in Amorphous Carbon Films on Transport Properties
Vali Dalouji1**, Dariush Mehrparvar1, Shahram Solaymani2, Sahar Rezaee3
1Department of Physics, Faculty of Science, Malayer University, Malayer, Iran
2Department of Physics, Science and Research Branch, Islamic Azad University, Tehran, Iran
3Department of Physics, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
Cite this article:   
Vali Dalouji, Dariush Mehrparvar, Shahram Solaymani et al  2018 Chin. Phys. Lett. 35 026501
Download: PDF(919KB)   PDF(mobile)(911KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Electrical properties of C/Ni films are studied using four mosaic targets made of pure graphite and stripes of nickel with the surface areas of 1.78, 3.21, 3.92 and 4.64%. The conductivity data in the temperature range of 400–500 K shows the extended state conduction. The conductivity data in the temperature range of 150–300 K shows the multi-phonon hopping conduction. The Berthelot-type conduction dominates in the temperature range of 50–150 K. The conductivity of the films in the temperature range about $T < 50$ K is described in terms of variable-range hopping conduction. In low temperatures, the localized density of state around Fermi level $N(E_{\rm F})$ for the film deposition with 3.92% nickel has a maximum value of about $56.2\times10^{17}$ cm$^{-3}$eV$^{-1}$ with the minimum average hopping distance of about $3.43\times10^{-6}$ cm.
Received: 26 September 2017      Published: 23 January 2018
PACS:  65.80.-g (Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)  
  66.30.Pa (Diffusion in nanoscale solids)  
  68.47.Fg (Semiconductor surfaces)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/2/026501       OR      https://cpl.iphy.ac.cn/Y2018/V35/I2/026501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Vali Dalouji
Dariush Mehrparvar
Shahram Solaymani
Sahar Rezaee
[1]Dejam L, Elahi S M, Nazari H H et al 2016 J. Mater. Sci.: Mater. Electron. 27 685
[2]Dalouji V, Elahi S M, Solaymani S et al 2016 Appl. Phys. A 122 541
[3]Ghodselahi T, Solaymani S, Akbarzadeh Pasha M et al 2012 Eur. Phys. J. D 66 299
[4]Chang Y Y, Wang D Y and Wu W 2002 Thin Solid Films 420 241
[5]Ţǎlu Ş Bramowicz M, Kulesza S et al 2016 J. Microsc. 264 143
[6]Ţǎlu Ş Bramowicz M, Kulesza S et al 2016 Electron. Mater. Lett. 12 580
[7]Ţǎlu Ş Bramowicz M, Kulesza S et al 2017 Opt. Quantum Electron. 49 204
[8]Kaiser A B and Skákalová V 2011 Chem. Soc. Rev. 40 3786
[9]Wen B, Cao M, Lu M et al 2014 Adv. Mater. 26 3484
[10]Cao M S, Song W L and Hou Z L 2010 Carbon 48 788
[11]Wen B, Cao M S and Hou Z L 2013 Carbon 65 124
[12]Sedlackova K, Lobotka P, Vavra I et al 2005 Carbon 43 2192
[13]Kumar R and Khare N 2008 Thin Solid Films 516 1302
[14]Ghodselahi T, Vesaghi M A, Shafiekhani A et al 2010 Physica B 405 3949
[15]Epstein K, Goldman A M and Kadin A M 1983 Phys. Rev. B 27 6685
[16]Toker D, Azulay D, Shimoni N et al 2003 Phys. Rev. B 68 041403
[17]Garcia-Zarco O, Rodil S E and Camacho-Lopez M A 2009 Thin Solid Films 518 1493
[18]Broers A N, Molzen W W, Cuomo J J et al 1976 Appl. Phys. Lett. 29 596
[19]Chow G M, Ding J and Zhang J 2002 Appl. Phys. Lett. 80 1028
[20]Dalouji V 2017 Optik 148 1
[21]Dalouji V and Asareh N 2017 Opt. Quantum Electron. 49 262
[22]Dalouji V, Elahi S M and Ahmadmarvili A 2017 Silicon 9 717
[23]Ţǎlu Ş Bramowicz M, Kulesza S et al 2016 Microsc. Res. Tech. 79 1208
[24]Dalouji V and Elahi S M 2016 Surf. Rev. Lett. 23 1650002
[25]Dalouji V 2016 Mater. Sci.-Poland 34 337
[26]Bansal S, Pandya D K and Kashyap S C 2012 Thin Solid Films 524 30
[27]Serin T, Yildiz A, Sahin S H et al 2011 Physica B 406 3551
[28]Singh J and Shimakawa K 2003 Advances in Amorphous Semiconductors (London: Taylor & Francis)
[29]Emin D 1974 Phys. Rev. Lett. 32 303
[30]Islam M N, Ram S K and Kumar S 2009 Physica E 41 1025
[31]Dalouji V, Elahi S M, Ghaderi A et al 2016 Chin. Phys. Lett. 33 057203
[32]Tan M, Köseoglu Y, Alan F et al 2011 J. Alloys Compd. 509 9399
[33]Hurd C M 1985 J. Phys. C: Solid State Phys. 18 1985 6487
[34]Mehra R M, Vivechana A, Vijay A S et al 1998 J. Appl. Phys. 83 2235
[35]Mott N F and Davis E A 1971 Electronic Processes in Non-Crystalline Materials (Oxford: Clarendon Press)
Related articles from Frontiers Journals
[1] Gui-ping Zhu , Chang-wei Zhao , Xi-wen Wang , and Jian Wang. Tuning Thermal Conductivity in Si Nanowires with Patterned Structures[J]. Chin. Phys. Lett., 2021, 38(2): 026501
[2] Deyan Sun, Cheng Shang, Zhipan Liu, Xingao Gong. Intrinsic Features of an Ideal Glass[J]. Chin. Phys. Lett., 2017, 34(2): 026501
[3] LU Xing, ZHONG Wei-Rong. Low Thermal Conductivity of Paperclip-Shaped Graphene Superlattice Nanoribbons[J]. Chin. Phys. Lett., 2015, 32(09): 026501
[4] WEI Liang, XU Zhi-Cheng, ZHENG Dong-Qin, ZHANG Wei, ZHONG Wei-Rong. Heat Transport in Double-Bond Linear Chains of Fullerenes[J]. Chin. Phys. Lett., 2015, 32(07): 026501
[5] CHEN Xiao-Ming, HUO Kai-Tuo, LIU Peng. In Situ X-Ray Diffraction Study on Surface Melting of Bi Nanoparticles Embedded in a SiO2 Matrix[J]. Chin. Phys. Lett., 2014, 31(1): 026501
[6] PAN Rui-Qin, XU Zi-Jian, DAI Cui-Xia. Thermal Conductivity of the Partly Covered Inner Tube in a Double-Walled Carbon Nanotube with Varied Coverage Ratios[J]. Chin. Phys. Lett., 2014, 31(1): 026501
[7] PENG Chun, ZHANG Hong, CHENG Xin-Lu. Path Integral Monte Carlo Study of X@C50 [X=H2, He, Ne, Ar][J]. Chin. Phys. Lett., 2013, 30(11): 026501
[8] LÜ, Yong-Jun**. Enhanced Surface Premelting of Ni90Si10 Nanoparticles[J]. Chin. Phys. Lett., 2012, 29(4): 026501
[9] ZHOU Guo-Rui, FENG Guo-Ying, ZHANG Yi, MA Zi, WANG Jian-Jun. A Temperature Sensor Based on a Symmetrical Metal-Cladding Optical Waveguide[J]. Chin. Phys. Lett., 2012, 29(2): 026501
[10] WANG Sheng-Jie, ZHANG Chun-Lai, WANG Zhi-Guo. Melting of Single-Walled Silicon Carbide Nanotubes: Density Functional Molecular Dynamics Simulation[J]. Chin. Phys. Lett., 2010, 27(10): 026501
[11] HU Guo-Jie, CAO Bing-Yang, LI Yuan-Wei. Thermal Conduction in a Single Polyethylene Chain Using Molecular Dynamics Simulations[J]. Chin. Phys. Lett., 2014, 31(08): 026501
Viewed
Full text


Abstract