Chin. Phys. Lett.  2017, Vol. 34 Issue (10): 100701    DOI: 10.1088/0256-307X/34/10/100701
GENERAL |
Design and Evaluation of a Differential Accelerometer for Drop-Tower Equivalence Principle Test with Rotating Masses
Feng-Tian Han**, Tian-Yi Liu, Xiao-Xia He, Qiu-Ping Wu**
Department of Precision Instrument, Tsinghua University, Beijing 100084
Cite this article:   
Feng-Tian Han, Tian-Yi Liu, Xiao-Xia He et al  2017 Chin. Phys. Lett. 34 100701
Download: PDF(906KB)   PDF(mobile)(899KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A differential accelerometer comprising of two rotating masses made of the same material is proposed for drop tower-based free-fall testing of the spin–spin force between the rotating mass and the Earth. The measurement is performed by placing the two concentric masses of very different momenta in a vacuum drop capsule which is falling freely in the Earth's gravitational field. A nonzero output of the differential accelerometer is an indication of possible violation of new equivalence principle (NEP). We present the conceptual design of a modified free-fall NEP experiment which can be performed at the Beijing drop tower. Design and evaluation of the differential accelerometer with a hybrid electrostatic/magnetic suspension system are presented to accommodate for operation on ground and drop-tower tests. Details specific to the measurement uncertainty are discussed to yield an NEP test accuracy of $7.2\times10^{-9}$.
Received: 19 July 2017      Published: 27 September 2017
PACS:  07.87.+v (Spaceborne and space research instruments, apparatus, and components (satellites, space vehicles, etc.))  
  04.80.Cc (Experimental tests of gravitational theories)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 91436107 and 61374207.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/10/100701       OR      https://cpl.iphy.ac.cn/Y2017/V34/I10/100701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Feng-Tian Han
Tian-Yi Liu
Xiao-Xia He
Qiu-Ping Wu
[1]Sondag A and Dittus H 2016 Adv. Space Res. 58 644
[2]Liorzou F, Boulanger D, Rodrigues M, Touboul P and Selig A 2014 Adv. Space Res. 54 1119
[3]Overduin J, Everitt F, Mester J and Worden P 2009 Adv. Space Res. 43 1532
[4]Nobili A M, Shao M, Pegna R, Zvattini G, Turyshev S G, Lucchesi D M, De Michele A, Doravari, S, Comandi G L, Saravanan T R et al 2012 Class. Quantum Grav. 29 184011
[5]Iafolla V, Lucchesi D M, Nozzoli S, Ravenna M, Santoli F, Shapiro I I, Lorenzini E C, Cosmo M L, Bombardelli C, Ashenberg J et al 2011 Adv. Space Res. 47 1225
[6]Gao F, Zhou Z B and Luo J 2011 Chin. Phys. Lett. 28 080401
[7]Zhang Y Z, Luo J and Nie Y X 2001 Mod. Phys. Lett. A 16 789
[8]Zhou Z B, Luo J, Yan Q, Wu Z G, Zhang Y Z and Nie Y X 2002 Phys. Rev. D 66 022002
[9]Nitschke J M and Wilmarth P A 1990 Phys. Rev. Lett. 64 2115
[10]Sileko A J and Teryaev O V 2007 Phys. Rev. D 76 061101(R)
[11]Hu Z K, Ke Y, Deng X B, Zhou Z B and Luo J 2012 Chin. Phys. Lett. 29 080401
[12]Han F T, Wu Q P, Zhou Z B and Zhang Y Z 2014 Chin. Phys. Lett. 31 110401
[13]Han F T, Liu T Y, Li L L and Wu Q P 2016 Sensors 16 1262
[14]Touboul P, Métris G, Lebat V and Robert A 2012 Class. Quantum Grav. 29 184010
[15]Liu T Y, Wu Q P, Sun B Q and Han F T 2016 Sci. Rep. 6 31632
[16]Zhang X Q, Yuan L G, Wu W D, Tian L Q and Yao K Z 2005 Sci. Chin. E 48 305
[17]Touboul P, Rodrigues M, Willemenot E and Bernard A 1996 Class. Quantum Grav. 13 A67
[18]Li G, Wu S C, Zhou Z B, Bai Y Z and Hu M 2013 Rev. Sci. Instrum. 84 125004
[19]Josselin V, Touboul P and Kielbasa R 1999 Sens. Actuators A 78 92
[20]Keith F J, Williams R D and Allaire P E 1990 Tribol. Trans. 33 307
[21]Sun B Q, Han F T, Li L L and Wu Q P 2016 IEEE Trans. Ind. Electron. 63 4336
[22]Selig H, Dittus H and Lammerzahl C 2010 Microgravity Sci. Technol. 22 539
Related articles from Frontiers Journals
[1] Meng-Ying Zhang, Zhi-Yuan Hu, Zheng-Xuan Zhang, Shuang Fan, Li-Hua Dai, Xiao-Nian Liu, Lei Song. Total Ionizing Dose Response of Different Length Devices in 0.13μm Partially Depleted Silicon-on-Insulator Technology[J]. Chin. Phys. Lett., 2017, 34(8): 100701
[2] Yu-Xiong Duan, Bin Wang, Jing-Feng Xiang, Qian Liu, Qiu-Zhi Qu, De-Sheng Lü, Liang Liu. State Preparation in a Cold Atom Clock by Optical Pumping[J]. Chin. Phys. Lett., 2017, 34(7): 100701
[3] HAN Feng-Tian, WU Qiu-Ping, ZHOU Ze-Bing, ZHANG Yuan-Zhong. Proposed Space Test of the New Equivalence Principle with Rotating Extended Bodies[J]. Chin. Phys. Lett., 2014, 31(11): 100701
[4] PENG Chao, ZHANG Zheng-Xuan, HU Zhi-Yuan, HUANG Hui-Xiang, NING Bing-Xu, BI Da-Wei. Enhanced Radiation Sensitivity in Short-Channel Partially Depleted Silicon-on-Insulator n-Type Metal-Oxide-Semiconductor Field Effect Transistors[J]. Chin. Phys. Lett., 2013, 30(9): 100701
[5] HUANG Hui-Xiang, BI Da-Wei, PENG Chao, ZHANG Yan-Wei, ZHANG Zheng-Xuan. The Enhanced Role of Shallow-Trench Isolation in Ionizing Radiation Damage of Narrow Width Devices in 0.2 μm Partially-Depleted Silicon-on-Insulator Technology[J]. Chin. Phys. Lett., 2013, 30(8): 100701
[6] LIU Zhang-Li, **, HU Zhi-Yuan, ZHANG Zheng-Xuan, SHAO Hua, NING Bing-Xu, BI Da-Wei, CHEN Ming, ZOU Shi-Chang . Enhanced Total Ionizing Dose Susceptibility in Narrow Channel Devices[J]. Chin. Phys. Lett., 2011, 28(7): 100701
[7] Wei Zhuang, Fang Fang, Shao-Kai Wang, Yang Zhao, Tian-Chu Li. Computed Tidal Relativistic Red-Shifts of Frequency Standards on Earth and in Space Stations[J]. Chin. Phys. Lett., 2017, 34(11): 100701
[8] Chao Peng, Yun-Fei En, Zhi-Feng Lei, Yi-Qiang Chen, Yuan Liu, Bin Li. Influence of Total Ionizing Dose Irradiation on Low-Frequency Noise Responses in Partially Depleted SOI nMOSFETs[J]. Chin. Phys. Lett., 2017, 34(11): 100701
Viewed
Full text


Abstract