GENERAL |
|
|
|
|
Design and Evaluation of a Differential Accelerometer for Drop-Tower Equivalence Principle Test with Rotating Masses |
Feng-Tian Han**, Tian-Yi Liu, Xiao-Xia He, Qiu-Ping Wu** |
Department of Precision Instrument, Tsinghua University, Beijing 100084
|
|
Cite this article: |
Feng-Tian Han, Tian-Yi Liu, Xiao-Xia He et al 2017 Chin. Phys. Lett. 34 100701 |
|
|
Abstract A differential accelerometer comprising of two rotating masses made of the same material is proposed for drop tower-based free-fall testing of the spin–spin force between the rotating mass and the Earth. The measurement is performed by placing the two concentric masses of very different momenta in a vacuum drop capsule which is falling freely in the Earth's gravitational field. A nonzero output of the differential accelerometer is an indication of possible violation of new equivalence principle (NEP). We present the conceptual design of a modified free-fall NEP experiment which can be performed at the Beijing drop tower. Design and evaluation of the differential accelerometer with a hybrid electrostatic/magnetic suspension system are presented to accommodate for operation on ground and drop-tower tests. Details specific to the measurement uncertainty are discussed to yield an NEP test accuracy of $7.2\times10^{-9}$.
|
|
Received: 19 July 2017
Published: 27 September 2017
|
|
PACS: |
07.87.+v
|
(Spaceborne and space research instruments, apparatus, and components (satellites, space vehicles, etc.))
|
|
04.80.Cc
|
(Experimental tests of gravitational theories)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 91436107 and 61374207. |
|
|
[1] | Sondag A and Dittus H 2016 Adv. Space Res. 58 644 | [2] | Liorzou F, Boulanger D, Rodrigues M, Touboul P and Selig A 2014 Adv. Space Res. 54 1119 | [3] | Overduin J, Everitt F, Mester J and Worden P 2009 Adv. Space Res. 43 1532 | [4] | Nobili A M, Shao M, Pegna R, Zvattini G, Turyshev S G, Lucchesi D M, De Michele A, Doravari, S, Comandi G L, Saravanan T R et al 2012 Class. Quantum Grav. 29 184011 | [5] | Iafolla V, Lucchesi D M, Nozzoli S, Ravenna M, Santoli F, Shapiro I I, Lorenzini E C, Cosmo M L, Bombardelli C, Ashenberg J et al 2011 Adv. Space Res. 47 1225 | [6] | Gao F, Zhou Z B and Luo J 2011 Chin. Phys. Lett. 28 080401 | [7] | Zhang Y Z, Luo J and Nie Y X 2001 Mod. Phys. Lett. A 16 789 | [8] | Zhou Z B, Luo J, Yan Q, Wu Z G, Zhang Y Z and Nie Y X 2002 Phys. Rev. D 66 022002 | [9] | Nitschke J M and Wilmarth P A 1990 Phys. Rev. Lett. 64 2115 | [10] | Sileko A J and Teryaev O V 2007 Phys. Rev. D 76 061101(R) | [11] | Hu Z K, Ke Y, Deng X B, Zhou Z B and Luo J 2012 Chin. Phys. Lett. 29 080401 | [12] | Han F T, Wu Q P, Zhou Z B and Zhang Y Z 2014 Chin. Phys. Lett. 31 110401 | [13] | Han F T, Liu T Y, Li L L and Wu Q P 2016 Sensors 16 1262 | [14] | Touboul P, Métris G, Lebat V and Robert A 2012 Class. Quantum Grav. 29 184010 | [15] | Liu T Y, Wu Q P, Sun B Q and Han F T 2016 Sci. Rep. 6 31632 | [16] | Zhang X Q, Yuan L G, Wu W D, Tian L Q and Yao K Z 2005 Sci. Chin. E 48 305 | [17] | Touboul P, Rodrigues M, Willemenot E and Bernard A 1996 Class. Quantum Grav. 13 A67 | [18] | Li G, Wu S C, Zhou Z B, Bai Y Z and Hu M 2013 Rev. Sci. Instrum. 84 125004 | [19] | Josselin V, Touboul P and Kielbasa R 1999 Sens. Actuators A 78 92 | [20] | Keith F J, Williams R D and Allaire P E 1990 Tribol. Trans. 33 307 | [21] | Sun B Q, Han F T, Li L L and Wu Q P 2016 IEEE Trans. Ind. Electron. 63 4336 | [22] | Selig H, Dittus H and Lammerzahl C 2010 Microgravity Sci. Technol. 22 539 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|