Chin. Phys. Lett.  2017, Vol. 34 Issue (10): 101201    DOI: 10.1088/0256-307X/34/10/101201
THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
Strong Interaction Effect on Jet Energy Loss with Detailed Balance
Jing-Ya Zhang, Luan Cheng**
School of Physics, Dalian University of Technology, Dalian 116024
Cite this article:   
Jing-Ya Zhang, Luan Cheng 2017 Chin. Phys. Lett. 34 101201
Download: PDF(563KB)   PDF(mobile)(552KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The strong force effect on gluon distribution of quark-gluon plasma and its influence on jet energy loss with detailed balance are studied. We solve the possibility equation and obtain the value of non-extensive parameter $q$. In the presence of strong interaction, more gluons stay at low-energy state than the free gluon case. The strong interaction effect is found to be important for jet energy loss with detailed balance at intermediate jet energy. The energy gain via absorption increases with the strong interaction. This will affect the nuclear modification factor $R_{\rm AA}$ and the parameter of $\hat{q}$ at intermediate jet energy.
Received: 24 April 2017      Published: 27 September 2017
PACS:  12.38.Mh (Quark-gluon plasma)  
  11.80.La (Multiple scattering)  
  25.75.-q (Relativistic heavy-ion collisions (collisions induced by light ions studied to calibrate relativistic heavy-ion collisions should be classified under both 25.75.-q and sections 13 or 25 appropriate to the light ions))  
  12.40.Ee (Statistical models)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 11205024, and the Doctoral Scientific Fund Project of the Ministry of Education of China under Grant No 2012004112004.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/10/101201       OR      https://cpl.iphy.ac.cn/Y2017/V34/I10/101201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jing-Ya Zhang
Luan Cheng
[1]Zhang B W and Wang E K 2003 Chin. Phys. Lett. 20 639
[2]Adcox k et al 2001 Phys. Rev. Lett. 88 022301
Adler C et al 2002 Phys. Rev. Lett. 89 202301
[3]Betz B and Gyulassy M 2015 Chin. Phys. Lett. 32 121204
[4]Adler C et al 2003 Phys. Rev. Lett. 90 082302
[5]Gyulassy M and Wang X N 1994 Nucl. Phys. B 420 583
Wang X N, Gyulassy M and Plumer M 1995 Phys. Rev. D 51 3436
[6]Baier R, Dokshitzer Y L, Peigne S and Schiff D 1995 Phys. Lett. B 345 277
Baier R, Dokshitzer Y L, Mueller A H, Peigne S and Schiff D 1997 Nucl. Phys. B 484 265
[7]Zakharov B G 1996 JETP Lett. 63 952
Zakharov B G 1997 JETP Lett. 65 615
[8]Gyulassy M, Levai P and Vitev I 2000 Phys. Rev. Lett. 85 5535
Gyulassy M, Levai P and Vitev I 2001 Nucl. Phys. B 594 371
[9]Wiedemann U A 2000 Nucl. Phys. B 588 303
[10]Guo X and Wang X N 2000 Phys. Rev. Lett. 85 3591
[11]Cheng L, Liu J and Wang E 2014 Sci. Chin. Phys. Mech. Astron. 57 2070
[12]Ma Z J, Zhu J Q, Shi C Y and Li Y D 2015 Chin. Phys. Lett. 32 121202
[13]Wang E and Wang X N 2001 Phys. Rev. Lett. 87 142301
[14]Tsallis C 2009 Introduction To Nonextensive Statistical Mechanics–Approaching A Complex World (New York: Springer)
Tirnakli U, Ananos G F J and Tsallis C 2001 Phys. Lett. A 289 51
[15]Plastino A R and Plastino A 1994 Phys. Lett. A 193 251
[16]Alberico W M, Lavagno A and Quarati P 2000 Eur. Phys. J. C 12 499
Alberico W M, Lavagno A and Quarati P 2001 Nucl. Phys. A 680 94
[17]Huang Z F, Su G Z, Kaabouchi A E L, Wang Q A and Chen J C 2010 J. Stat. Mech. 2010 L05001
[18]Beck C and Schlogl F 1993 Thermodynamics of Chaotic Systems (Cambridge: Cambridge University Press)
[19]Beck C 2000 Physica A 286 164
[20]Teweldeberhan A M, Plastino A R and Miller H G 2005 Phys. Lett. A 343 71
[21]Eskola K J, Kajantie k, Ruuskanen P V and Tuominen K 2000 Nucl. Phys. B 570 379
[22]Shen C, U Heinz U, Huovinen P and Song H 2010 Phys. Rev. C 82 054904
[23]Braaten E and Pisarski R D 1990 Nucl. Phys. B 337 569
[24]Udayanandan K M, Sethumadhavan P and Bannur V M 2007 Phys. Rev. C 76 044908
Related articles from Frontiers Journals
[1] Shanjin Wu, Chun Shen, and Huichao Song. Dynamically Exploring the QCD Matter at Finite Temperatures and Densities: A Short Review[J]. Chin. Phys. Lett., 2021, 38(8): 101201
[2] Zonghou Han , Baoyi Chen , and Yunpeng Liu. Critical Temperature of Deconfinement in a Constrained Space Using a Bag Model at Vanishing Baryon Density[J]. Chin. Phys. Lett., 2020, 37(11): 101201
[3] Liang-Kai Wu, Xiang-Fei Meng, Fa-Ling Zhang. Curvature of Pseudocritical Transition Line for Two-Flavor QCD with Improved Kogut–Susskind Quarks[J]. Chin. Phys. Lett., 2017, 34(4): 101201
[4] XU Shu-Sheng, JIANG Yu, SHI Chao, CUI Zhu-Fang, ZONG Hong-Shi. A Model-Independent Discussion of Quark Number Density and Quark Condensate at Zero Temperature and Finite Quark Chemical Potential[J]. Chin. Phys. Lett., 2015, 32(12): 101201
[5] SHI Chao-Yi, ZHU Jia-Qing, MA Zhi-Lei, LI Yun-De. Thermal Width for Heavy Quarkonium in the Static Limit[J]. Chin. Phys. Lett., 2015, 32(12): 101201
[6] MA Zhi-Lei, ZHU Jia-Qing, SHI Chao-Yi, LI Yun-De. Quark Loop Contribution to the Gluon Damping Rate in Hot QCD[J]. Chin. Phys. Lett., 2015, 32(12): 101201
[7] Barbara Betz, Miklos Gyulassy. Sensitivity of Pion versus Parton-Jet Nuclear Modification Factors to the Path-Length Dependence of Jet-Energy Loss at RHIC and LHC[J]. Chin. Phys. Lett., 2015, 32(12): 101201
[8] Jiechen Xu, Jinfeng Liao, Miklos Gyulassy. Consistency of Perfect Fluidity and Jet Quenching in Semi-Quark-Gluon Monopole Plasmas[J]. Chin. Phys. Lett., 2015, 32(09): 101201
[9] TIAN Ya-Lan, CUI Zhu-Fang, WANG Bin, SHI Yuan-Mei, YANG You-Chang, ZONG Hong-Shi. Dyson–Schwinger Equations of Chiral Chemical Potential[J]. Chin. Phys. Lett., 2015, 32(08): 101201
[10] CAI Yan-Bing, YANG Hai-Tao, LI Yun-De. Production of High-pT Kaon and Pion in pp and Au–Au Collisions by Resolved Photoproduction Processes[J]. Chin. Phys. Lett., 2015, 32(08): 101201
[11] JIANG Yu, HOU Feng-Yao, LUO Cui-Bai, ZONG Hong-Shi. Quark Number Susceptibility around the Chiral Critical End Point[J]. Chin. Phys. Lett., 2015, 32(02): 101201
[12] YU Gong-Ming, LI Yun-De. Photoproduction of Light Vector Meson in Relativistic Heavy Ion Collisions[J]. Chin. Phys. Lett., 2014, 31(1): 101201
[13] P. Guptaroy, S. Guptaroy. Direct Photon Production at RHIC and LHC-Energies: Measured Data Versus a Model[J]. Chin. Phys. Lett., 2013, 30(6): 101201
[14] LI Han-Lin, ZHANG Ben-Wei, WANG En-Ke. Jet Energy Shift due to Non-Perturbative QCD Effects in p+p Collisions Studied with PYTHIA[J]. Chin. Phys. Lett., 2013, 30(5): 101201
[15] TANG Ze-Bo, YI Li, RUAN Li-Juan, SHAO Ming, LI Cheng, CHEN Hong-Fang, Bedanga Mohanty, XU Zhang-Bu. The Statistical Origin of Constituent-Quark Scaling in QGP Hadronization[J]. Chin. Phys. Lett., 2013, 30(3): 101201
Viewed
Full text


Abstract