Chin. Phys. Lett.  2017, Vol. 34 Issue (10): 100501    DOI: 10.1088/0256-307X/34/10/100501
GENERAL |
Localized Optical Waves in Defocusing Regime of Negative-Index Materials
Wen-Hao Xu1,2, Zhan-Ying Yang1,2**, Chong Liu1,2**, Wen-Li Yang2,3
1School of Physics, Northwest University, Xi'an 710069
2Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi'an 710069
3Institute of Modern Physics, Northwest University, Xi'an 710069
Cite this article:   
Wen-Hao Xu, Zhan-Ying Yang, Chong Liu et al  2017 Chin. Phys. Lett. 34 100501
Download: PDF(1192KB)   PDF(mobile)(1178KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study optical localized waves on a plane-wave background in negative-index materials governed by the defocusing nonlinear Schrödinger equation with self-steepening effect. Important characteristics of localized waves, such as the excitations, transitions, propagation stability, and mechanism, are revealed in detail. An intriguing sequential transition that involves the rogue wave, antidark–dark soliton pair, antidark soliton and antidark soliton pair can be triggered as the self-steepening effect attenuates. The corresponding phase diagram is established in the defocusing regime of negative-index materials. The propagation stability of the localized waves is confirmed numerically. In particular, our results illuminate the transition mechanism by establishing the exact correspondence between the transition and the modulation instability analysis.
Received: 08 May 2017      Published: 27 September 2017
PACS:  05.45.Yv (Solitons)  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  42.65.-k (Nonlinear optics)  
  78.20.Bh (Theory, models, and numerical simulation)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11475135, 11547302, 11434013 and 11425522.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/10/100501       OR      https://cpl.iphy.ac.cn/Y2017/V34/I10/100501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wen-Hao Xu
Zhan-Ying Yang
Chong Liu
Wen-Li Yang
[1]Veselago V G 1968 Sov. Phys. Usp 10 509
[2]Kapitanova P V et al 2011 Appl. Phys. Lett. 99 251914
[3]Shadrivov I V et al 2012 Phys. Rev. Lett. 109 083902
[4]Smith D R et al 2000 Phys. Rev. Lett. 84 4184
[5]Shelby R A et al 2001 Science 292 77
[6]Zharov A A et al 2003 Phys. Rev. Lett. 91 037401
[7]Pendry J B et al 2006 Science 312 1780
Shalaev V M 2007 Nat. Photon. 1 41
[8]Tlidi M et al 2011 Phys. Rev. A 84 013807
[9]Zhang L et al 2015 Appl. Phys. B 121 465
[10]Wang Y F et al 2015 Phys. Rev. B 92 104110
[11]Gabitov I R et al 2006 J. Opt. Soc. Am. B 23 535
[12]Wang Z et al 2010 J. Appl. Phys. 107 094907
[13]Scalora M et al 2005 Phys. Rev. Lett. 95 013902
[14]Biswas A et al 2014 Optik 125 3299
Biswas A et al 2014 J. Mod. Opt. 61 1550
[15]Boardman A D et al 2010 Opt. Commun. 283 1585
[16]Xu Y et al 2016 Opt. Laser Technol. 77 177
[17]Li P 2010 Phys. Rev. E 82 046603
[18]Kibler B et al 2010 Nat. Phys. 6 790
[19]Akhmediev N et al 2009 Phys. Rev. E 80 026601
[20]He J et al 2014 Chin. Phys. Lett. 31 010502
He J et al 2015 AIP Adv. 5 017105
[21]Ren Y et al 2015 Phys. Lett. A 379 2991
Ren Y et al 2016 Eur. Phys. J. D 70 187
[22]Liu C et al 2015 Phys. Rev. E 91 022904
[23]Liu C et al 2015 Ann. Phys. 362 130
[24]Liu C et al 2016 Phys. Rev. E 94 042221
[25]Chowdury A et al 2015 Proc. R. Soc. A 471 20150130
[26]Wang L et al 2016 Phys. Rev. E 93 012214
[27]Zakharov V E et al 2009 Physica D 238 540
Zakharov V E et al 2013 Phys. Rev. Lett. 111 054101
[28]Dudley J M et al 2014 Nat. Photon. 8 755
[29]Solli D R et al 2007 Nature 450 1054
[30]Liu C et al 2014 Phys. Rev. A 89 055803
[31]Liu C et al 2014 Opt. Lett. 39 1057
Duan L et al 2016 Chin. Phys. Lett. 33 010501
[32]Wang X et al 2014 Chin. Phys. Lett. 31 090201
[33]Shen Y et al 2017 Phys. Rev. E 95 032223
[34]Essama B G O et al 2014 Phys. Rev. E 90 032911
Essama B G O et al 2014 Opt. Commun. 331 334
[35]Wen S et al 2006 Opt. Express 14 1568
[36]Wen S et al 2007 Phys. Rev. A 75 033815
[37]Wen S et al 2006 Phys. Rev. E 73 036617
Xiang Y et al 2010 Phys. Rev. E 82 056605
[38]Sarmaa A K 2011 Eur. Phys. J. D 62 421
[39]Guo B L et al 2012 Phys. Rev. E 85 026607
Guo B L et al 2014 Phys. Rev. E 89 041201
[40]Baronio F et al 2014 Phys. Rev. Lett. 113 034101
[41]Zhao L C and Ling L M 2016 J. Opt. Soc. Am. B 33 850
Related articles from Frontiers Journals
[1] S. Y. Lou, Man Jia, and Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 100501
[2] Shubin Wang, Guoli Ma, Xin Zhang, and Daiyin Zhu. Dynamic Behavior of Optical Soliton Interactions in Optical Communication Systems[J]. Chin. Phys. Lett., 2022, 39(11): 100501
[3] Wen-Xiu Ma. Matrix Integrable Fourth-Order Nonlinear Schr?dinger Equations and Their Exact Soliton Solutions[J]. Chin. Phys. Lett., 2022, 39(10): 100501
[4] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 100501
[5] Qin Zhou, Yu Zhong, Houria Triki, Yunzhou Sun, Siliu Xu, Wenjun Liu, and Anjan Biswas. Chirped Bright and Kink Solitons in Nonlinear Optical Fibers with Weak Nonlocality and Cubic-Quantic-Septic Nonlinearity[J]. Chin. Phys. Lett., 2022, 39(4): 100501
[6] Yuan Zhao, Yun-Bin Lei, Yu-Xi Xu, Si-Liu Xu, Houria Triki, Anjan Biswas, and Qin Zhou. Vector Spatiotemporal Solitons and Their Memory Features in Cold Rydberg Gases[J]. Chin. Phys. Lett., 2022, 39(3): 100501
[7] Yiling Zhang, Chunyu Jia, and Zhaoxin Liang. Dynamics of Two Dark Solitons in a Polariton Condensate[J]. Chin. Phys. Lett., 2022, 39(2): 100501
[8] Qin Zhou. Influence of Parameters of Optical Fibers on Optical Soliton Interactions[J]. Chin. Phys. Lett., 2022, 39(1): 100501
[9] Xiao-Man Zhang, Yan-Hong Qin, Li-Ming Ling, and Li-Chen Zhao. Inelastic Interaction of Double-Valley Dark Solitons for the Hirota Equation[J]. Chin. Phys. Lett., 2021, 38(9): 100501
[10] Qi-Hao Cao  and Chao-Qing Dai. Symmetric and Anti-Symmetric Solitons of the Fractional Second- and Third-Order Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2021, 38(9): 100501
[11] Yuan-Yuan Yan  and Wen-Jun Liu. Soliton Rectangular Pulses and Bound States in a Dissipative System Modeled by the Variable-Coefficients Complex Cubic-Quintic Ginzburg–Landau Equation[J]. Chin. Phys. Lett., 2021, 38(9): 100501
[12] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 100501
[13] Zequn Qi , Zhao Zhang , and Biao Li. Space-Curved Resonant Line Solitons in a Generalized $(2+1)$-Dimensional Fifth-Order KdV System[J]. Chin. Phys. Lett., 2021, 38(6): 100501
[14] Wei Wang, Ruoxia Yao, and Senyue Lou. Abundant Traveling Wave Structures of (1+1)-Dimensional Sawada–Kotera Equation: Few Cycle Solitons and Soliton Molecules[J]. Chin. Phys. Lett., 2020, 37(10): 100501
[15] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 100501
Viewed
Full text


Abstract