Chin. Phys. Lett.  2016, Vol. 33 Issue (10): 100402    DOI: 10.1088/0256-307X/33/10/100402
GENERAL |
Electromagnetic Resonance of Astigmatic Gaussian Beam to the High Frequency Gravitational Waves
Yuan-Hong Zhong1**, Jin Li2, Yao Zhou1, Qi-Lun Lei1
1College of Communication Engineering, Chongqing University, Chongqing 400044
2College of Physics, Chongqing University, Chongqing 401331
Cite this article:   
Yuan-Hong Zhong, Jin Li, Yao Zhou et al  2016 Chin. Phys. Lett. 33 100402
Download: PDF(459KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The high frequency gravitational waves (around $10^{8}$–$10^{12}$ Hz) could interact with a specially designed electromagnetic resonance system. It is found that the power of transverse perturbative photon flux (PPF) of an electromagnetic resonance system can be improved significantly by virtue of an astigmatic Gaussian beam. Correspondingly the signal-to-noise ratio (SNR) would also be improved. When the eccentric ratio of waist satisfying $w_{0x}:w_{0y}>1$, the peak value of signal photon flux could be raised by 2–4 times with typical systematic parameters, while the background photon flux would be depressed. Therefore, the ratio of transverse PPF to background photon flux (i.e., SNR) can be further improved 3–8 times with dimensionless amplitude of relic gravitational wave $h_{\rm t}=10^{-36}$.
Received: 14 July 2016      Published: 27 October 2016
PACS:  04.30.Nk (Wave propagation and interactions)  
  04.25.Nx (Post-Newtonian approximation; perturbation theory; related Approximations)  
  04.30.Db (Wave generation and sources)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11205254 and 61501069, and the Fundamental Research Funds for the Central Universities under Grant No 106112016CDJXY300002.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/10/100402       OR      https://cpl.iphy.ac.cn/Y2016/V33/I10/100402
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yuan-Hong Zhong
Jin Li
Yao Zhou
Qi-Lun Lei
[1]Abbott B P et al 2016 Phys. Rev. Lett. 116 061102
[2]Abbott B P et al 2016 Phys. Rev. Lett. 116 241103
[3]Clarkson C and Seahra S S 2007 Class. Quantum Grav. 24 F33
[4]Seahra S S 2005 Phys. Rev. D 72 066002
[5]Li F Y, Tang M X and Shi D P 2003 Phys. Rev. D 67 104008
[6]Li F Y et al 2008 Eur. Phys. J. C 56 407
[7]Li F Y et al 2009 Phys. Rev. D 80 064013
[8]Yang N and Li F Y 2009 Chin. Phys. Lett. 26 050402
[9]Li J et al 2011 Gen. Relativ. Gravit. 43 2209
[10]Li F Y, Fang Z Y and Wen H 2013 Chin. Phys. B 22 120402
[11]Wen H, Li F Y and Fang Z Y 2014 Phys. Rev. D 89 104025
[12]Wang X Q and Lu B D 2001 Acta Opt. Sin. 21 1214
[13]Wu P and Lu B D 2002 High Power Laser Part. Beams 14 546
[14]Lu B D, Ma H and Zhang B 1999 Opt. Commun. 164 165
[15]Li L X et al 2013 Acta Phys. Sin. 62 194202 (in Chinese)
[16]Li J et al 2016 Int. J. Theor. Phys. 55 3506
[17]Birrel N D and Davies P C W 1982 Quantum Fields in Curved Space (Cambridge: Cambridge University Press)
[18]Turner M S, White M and Lidsey J E 1993 Phys. Rev. D 48 4613
[19]Zhao W et al 2013 Phys. Rev. D 87 124012
[20]Planck Collaboration 2015 arXiv:1502.02114
[21]Planck Collaboration 2015 arXiv:1502.01589
[22]Li X, Wang S and Wen H 2016 Chin. Phys. C 40 8 085101
[23]Mukohyama S et al 2014 J. Cosmol. Astropart. Phys. 1408 036
[24]Khoury J et al 2001 Phys. Rev. D 64 123522
[25]Li J, Zhang L and Wen H 2016 Int. J. Theor. Phys. 55 1871
[26]Wen W J et al 2002 Phys. Rev. Lett. 89 223901
[27]Zhou L et al 2003 Appl. Phys. Lett. 82 1012
[28]Hou B et al 2005 Opt. Express 13 9149
Related articles from Frontiers Journals
[1] Chao-Guang Huang, Yong-Gui Li, Ning Zhu. The Three-Arm Michelson–Fabry–Pérot Detector for Gravitational Waves[J]. Chin. Phys. Lett., 2016, 33(08): 100402
[2] LIU Chun-Xiang, LIANG Guo-Tao, ZHANG Mei-Na, LI Zhen-Hua, CHENG Chuan-Fu. Manipulation of Surface Plasmon Polaritons by Phase Modulation of Source Field with Inverse Problem Algorithm[J]. Chin. Phys. Lett., 2014, 31(05): 100402
[3] ZHANG Mei-Na, LI Zhen-Hua, CHEN Xiao-Yi, LIU Chun-Xiang, TENG Shu-Yun, CHENG Chuan-Fu. The Multi-Scale and the Multi-Fractality Properties of Speckles on Rough Screen Surfaces[J]. Chin. Phys. Lett., 2013, 30(4): 100402
[4] Rajan Arora, Mohd. Junaid Siddiqui, V. P. Singh. Wave Interaction and Resonance in a Non-Ideal Gas[J]. Chin. Phys. Lett., 2012, 29(12): 100402
[5] YANG Xiao-Song, LIU San-Qiu, **, LI Xiao-Qing, . Modulational Instability for Gravitoelectromagnetic Perturbations with Longitudinal and Transverse Modes[J]. Chin. Phys. Lett., 2011, 28(10): 100402
[6] ZHU Yin . Measurement of the Speed of Gravity[J]. Chin. Phys. Lett., 2011, 28(7): 100402
[7] PAN Qi-Yuan, JING Ji-Liang. Late-Time Evolution of the Phantom Scalar Perturbation in the Background of a Spherically Symmetric Static Black Hole[J]. Chin. Phys. Lett., 2010, 27(6): 100402
[8] LIU Liao. Cosmological Gravitational Wave in de Sitter Spacetime[J]. Chin. Phys. Lett., 2010, 27(2): 100402
[9] M. Khayrul Hasan, M. Hossain Ali. Dispersion Relations for Isothermal Plasma around the Horizon of Reissner-Nordström-de Sitter Black Hole[J]. Chin. Phys. Lett., 2009, 26(10): 100402
[10] LI Fang-Yu, YANG Nan. Phase and Polarization State of High-Frequency Relic Gravitational Waves[J]. Chin. Phys. Lett., 2009, 26(5): 100402
[11] ZHANG Yu, , WANG Chun-Yan, GUI Yuan-Xing, WANG Fu-Jun, YU Fei. Dirac Quasinormal Modes of a Schwarzschild Black Hole surrounded by Free Static Spherically Symmetric Quintessence[J]. Chin. Phys. Lett., 2009, 26(3): 100402
[12] LI Fang-Yu, CHEN Ying, WANG Ping. Electromagnetic Response of High-Frequency Gravitational Waves by Coupling Open Resonant Cavity[J]. Chin. Phys. Lett., 2007, 24(12): 100402
[13] ZHANG Yu, GUI Yuan-Xing, YU Fei, WANG Fu-Jun. Quasinormal Modes of Electromagnetic Perturbation around a Stringy Black Hole[J]. Chin. Phys. Lett., 2007, 24(10): 100402
[14] OU Xiao-Juan, ZHOU Wei, LI Lin, TENG Li-Hu, FENG Bao-Ying, ZHENG Sheng-Feng, WANG Feng-Wei. Negative and Superluminal Group Velocity Propagation with Narrow Pulse in a Coaxial Photonic Crystal[J]. Chin. Phys. Lett., 2007, 24(3): 100402
[15] LEE Zhi-Jun, WAN Zhen-Zhu,. Noises in Detecting Relic Gravitational Wave[J]. Chin. Phys. Lett., 2006, 23(12): 100402
Viewed
Full text


Abstract