Chin. Phys. Lett.  2016, Vol. 33 Issue (10): 100401    DOI: 10.1088/0256-307X/33/10/100401
GENERAL |
Hall Conductivity in the Cosmic Defect and Dislocation Spacetime
Kai Ma1**, Jian-Hua Wang1, Huan-Xiong Yang2, Hua-Wei Fan3
1School of Physics Science, Shaanxi University of Technology, Hanzhong 723000
2Interdisciplinary Center for Theoretical Study, University of Science and Technology of China, Hefei 200026
3School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710000
Cite this article:   
Kai Ma, Jian-Hua Wang, Huan-Xiong Yang et al  2016 Chin. Phys. Lett. 33 100401
Download: PDF(328KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Influences of topological defect and dislocation on conductivity behavior of charge carriers in external electromagnetic fields are studied. Particularly the quantum Hall effect is investigated in detail. It is found that the nontrivial deformations of spacetime due to topological defect and dislocation produce an electric current at the leading order of perturbation theory. This current then induces a deformation on the Hall conductivity. The corrections on the Hall conductivity depend on the external electric fields, the size of the sample and the momentum of the particle.
Received: 10 June 2016      Published: 27 October 2016
PACS:  04.62.+v (Quantum fields in curved spacetime)  
  11.27.+d (Extended classical solutions; cosmic strings, domain walls, texture)  
  12.20.Ds (Specific calculations)  
Fund: Supported by the China Scholarship Council under Grant No 201207010002, the Hanjiang Scholar Project of Shaanxi University of Technology, the National Natural Science Foundation of China under Grant No 11147181, the Scientific Research Project of Shaanxi Province under Grant Nos 2009K01-54 and 12JK0960, the Startup Foundation of the University of Science and Technology of China, and the Project of Knowledge Innovation Program of the Chinese Academy of Sciences.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/10/100401       OR      https://cpl.iphy.ac.cn/Y2016/V33/I10/100401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Kai Ma
Jian-Hua Wang
Huan-Xiong Yang
Hua-Wei Fan
[1]Kibble T W B 1976 J. Phys. A 9 1387
[2]Muniz C R, Bezerra V B and Cunha M S 2014 Ann. Phys. 350 105
[3]Hiscock W A 1985 Phys. Rev. D 31 3288
[4]Vilenkin A 1985 Phys. Rep. 121 263
[5]Barriola M and Vilenkin A 1989 Phys. Rev. Lett. 63 341
[6]Vilenkin A 1983 Phys. Lett. B 133 177
[7]Kleinert H 1989 Gauge Fields in Condensed Matter (Singapore: World Scientific) vol 4 chap 2 p 1362
[8]Katanaev M O and Volovich I V 1999 Ann. Phys. 271 203
[9]Katanaev M O and Volovich I V 1992 Ann. Phys. (NY) 216 1
[10]Furtado C and Moraes F 1994 Phys. Lett. A 188 394
[11]de J G, Furtado C and Bezerra V B 2000 Phys. Rev. D 62 045003
[12]Bakke K, Ribeiro L R, Furtado C and Nascimento J R 2009 Phys. Rev. D 79 024008
[13]Bakke K 2014 Ann. Phys. (NY) 346 51
[14]Eugenio R and Bezerra de Mello 2004 J. High Energy Phys. 0406 016
[15]Mota H F and Bakke K 2014 Phys. Rev. D 89 027702
[16]Bakke K 2013 Gen. Relativ. Gravit. 45 1847
[17]Bakke K, Nascimento J R and Furtado C 2008 Phys. Rev. D 78 064012
[18]Bakke K and Furtado C 2013 Ann. Phys. (NY) 336 489
[19]Belich H and Bakke K 2014 Phys. Rev. D 90 025026
[20]Montero M and Martin-Martinez E 2011 Phys. Rev. A 84 012337
[21]Shen J Q 2004 Phys. Rev. D 70 067501
[22]Wang J H, Ma K and Li K 2013 Phys. Rev. A 87 032107
[23]Wang J H, Ma K, Li K and Fan H W 2015 Ann. Phys. 362 327
[24]Yang H X and Ma H L 2008 J. Cosmol. Astropart. Phys. 8 24
[25]Ma K and Dulat S 2011 Phys. Rev. A 84 012104
[26]Ma K, Wang J H and Yang H X 2016 Phys. Lett. B 756 221
[27]Chowdhury D and Basu B 2014 Phys. Rev. D 90 125014
[28]Chowdhury D and Basu B 2013 Ann. Phys. 329 166
[29]Basu B and Chowdhury D 2013 Ann. Phys. 335 47
[30]Basu B, Chowdhury D and Ghosh S 2013 Phys. Lett. A 377 1661
[31]Furtado C et al F 1994 Phys. Lett. A 195 90
[32]Marques G A, Furtado C, Bezerra V B and Moraes F 2001 J. Phys. A 34 5945
[33]Gal'tsov D V and Letelier P S 1993 Phys. Rev. D 47 4273
[34]De V A and Moreira Jr E S 2002 Phys. Rev. D 65 085013
[35]Nakahara M 1998 Geometry, Topology and Physics (Bristol: Institute of Physics Publishing)
[36]Hindmarsh M B and Kibble T W B 1995 Rep. Prog. Phys. 58 477
[37]Foldy L L and Wouthuysen S 1950 Phys. Rev. 78 29
[38]Landau L D and Lifshitz L M 1981 Quantum Mechanics (Singapore: Elsevier) vol 3 chap 3 p 67
Related articles from Frontiers Journals
[1] ZHANG Ming, YANG Zhan-Ying, YUE Rui-Hong. Spontaneous Emission of a Two-Level Static Atom Coupling with Electromagnetic Vacuum Fluctuations Outside a High-Dimensional Einstein Gauss-Bonnet Black Hole[J]. Chin. Phys. Lett., 2014, 31(10): 100401
[2] M. Ramzan . Dynamics of Fermionic Geometric Discord beyond Single-Mode Approximations[J]. Chin. Phys. Lett., 2013, 30(6): 100401
[3] ZHANG Jia-Lin, and YU Hong-Wei. Casimir–Polder-Like Force for an Atom in Hartle–Hawking Vacuum outside a Schwarzschild Black Hole[J]. Chin. Phys. Lett., 2012, 29(8): 100401
[4] NI Jun . Unification of General Relativity with Quantum Field Theory[J]. Chin. Phys. Lett., 2011, 28(11): 100401
[5] WEI Yi-Huan**, CHU Zhong-Hui . Thermodynamic Properties of a Reissner–Nordström Quintessence Black Hole[J]. Chin. Phys. Lett., 2011, 28(10): 100401
[6] WEI Yi-Huan. Mechanical and Thermal Properties of the AH of FRW Universe[J]. Chin. Phys. Lett., 2010, 27(5): 100401
[7] ZHAO Fan, HE Feng. Statistical Mechanical Entropy of a (4+n)-Dimensional Static Spherically Symmetric Black Hole[J]. Chin. Phys. Lett., 2010, 27(2): 100401
[8] JIANG Ke-Xia, KE San-Min, PENG Dan-Tao, FENG Jun. Hawking radiation as tunneling and the unified first law of thermodynamics at the apparent horizon of the FRW universe[J]. Chin. Phys. Lett., 2009, 26(7): 100401
[9] LI Cheng-Gai, YU Hong-Wei. Radiative Energy Shifts of an Atom Coupled to the Derivative of a Scalar Field near a Reflecting Boundary[J]. Chin. Phys. Lett., 2009, 26(5): 100401
[10] HUANG Tie-Tie, , ZHU Zhi-Ying, ZHU Yun-Feng, YU Hong-Wei,. Spontaneous Emission of an Atom in a Spacetime with Two Parallel Reflecting Boundaries[J]. Chin. Phys. Lett., 2009, 26(4): 100401
[11] HE Feng, ZHAO Fan. Statistical-Mechanical Entropy of a Black Hole with a Global Monopole to All Orders in Planck Length[J]. Chin. Phys. Lett., 2009, 26(4): 100401
[12] LIU Liao. Quantum de Sitter Spacetime and Energy Density Contributed from the Cosmological Constant[J]. Chin. Phys. Lett., 2008, 25(8): 100401
[13] FANG Heng-Zhong, ZHU Jian-Yang. Casimir Energy in Hartle--Hawking State[J]. Chin. Phys. Lett., 2008, 25(8): 100401
[14] YE Xing-Hao, LIN Qiang. Inhomogeneous Vacuum: An Alternative Interpretation of Curved Spacetime[J]. Chin. Phys. Lett., 2008, 25(5): 100401
[15] ZHU Zhi-Ying, YU Hong-Wei. Accelerated Multi-Level Atoms in an Electromagnetic Vacuum and Fulling--Davies--Unruh Effect[J]. Chin. Phys. Lett., 2008, 25(5): 100401
Viewed
Full text


Abstract