|
Polarization-Encoding-Based Measurement-Device-Independent Quantum Key Distribution with a Single Untrusted Source
Chuan-Qi Liu, Chang-Hua Zhu, Lian-Hui Wang, Lin-Xi Zhang, Chang-Xing Pei
Chin. Phys. Lett. 2016, 33 (10):
100301
.
DOI: 10.1088/0256-307X/33/10/100301
Measurement-device-independent quantum key distribution (MDI-QKD) can be immune to all detector side-channel attacks and guarantee the information-theoretical security even with uncharacterized single photon detectors. MDI-QKD has been demonstrated in both laboratories and field-tests by using attenuated lasers combined with the decoy-state technique. However, it is a critical assumption that the sources used by legitimate participants are trusted in MDI-QKD. Hence, it is possible that a potential security risk exists. Here we propose a new scheme of polarization-encoding-based MDI-QKD with a single untrusted source, by which the complexity of the synchronization system can be reduced and the success rate of the Bell-state measurement can be improved. Meanwhile, the decoy-state method is employed to avoid the security issues introduced by a non-ideal single photon source. We also derive a security analysis of the proposed system. In addition, it seems to be a promising candidate for the implementation for QKD network in the near future.
|
|
Magic Wavelength Measurement of the $^{87}$Sr Optical Lattice Clock at NIM
Qiang Wang, Yi-Ge Lin, Fei Meng, Ye Li, Bai-Ke Lin, Er-Jun Zang, Tian-Chu Li, Zhan-Jun Fang
Chin. Phys. Lett. 2016, 33 (10):
103201
.
DOI: 10.1088/0256-307X/33/10/103201
We report on the magic wavelength measurement of our optical lattice clock based on fermion strontium atoms at the National Institute of Metrology (NIM). A Ti:sapphire solid state laser locked to a reference cavity inside a temperature-stabilized vacuum chamber is employed to generate the optical lattice. The laser frequency is measured by an erbium fiber frequency comb. The trap depth is modulated by varying the lattice laser power via an acousto-optic modulator. We obtain the frequency shift coefficient at this lattice wavelength by measuring the differential frequency shift of the clock transition of the strontium atoms at different trap depths, and the frequency shift coefficient at this lattice wavelength is obtained. We measure the frequency shift coefficients at different lattice frequencies around the magic wavelength and linearly fit the measurement data, and the magic wavelength is calculated to be 368554672(44) MHz.
|
|
Sympathetic Cooling of $^{40}$Ca$^+$–$^{27}$Al$^+$ Ion Pair Crystal in a Linear Paul Trap
Jun-Juan Shang, Kai-Feng Cui, Jian Cao, Shao-Mao Wang, Si-Jia Chao, Hua-Lin Shu, Xue-Ren Huang
Chin. Phys. Lett. 2016, 33 (10):
103701
.
DOI: 10.1088/0256-307X/33/10/103701
The $^{27}$Al$^+$ ion optical clock is one of the most attractive optical clocks due to its own advantages such as low black-body radiation shift at room temperature and insensitivity to the magnetic drift. However, it cannot be laser-cooled directly in the absence of 167 nm laser to date. This problem can be solved by sympathetic cooling. In this work, a linear Paul trap is used to trap both $^{40}$Ca$^{+}$ and $^{27}$Al$^+$ ions simultaneously, and a single Doppler-cooled $^{40}$Ca$^+$ ion is employed to sympathetically cool a single $^{27}$Al$^+$ ion. Thus a 'bright-dark' two-ion crystal has been successfully synthesized. The temperature of the crystal has been estimated to be about 7 mK by measuring the ratio of carrier and sideband spectral intensities. Finally, the dark ion is proved to be an $^{27}$Al$^+$ ion by precise measuring of the ion crystal's secular motion frequency, which means that it is a great step for our $^{27}$Al$^+$ quantum logic clock.
|
|
Design of an Ultrafast Frequency Doubling Photonic Device
Jin-Jer Huang, Lin Su, Shao-Zhi Pu, Shang-Ao Sun, Liu-Yang Zhang
Chin. Phys. Lett. 2016, 33 (10):
104204
.
DOI: 10.1088/0256-307X/33/10/104204
Ultrashort pulses complicate the frequency conversion in a nonlinear crystal, where group velocity mismatch becomes the main obstacle due to dispersion. We present a design for group velocity compensated second harmonic generation in a modulated nonlinear structure, embedded in a liquid crystal box. In this structure, nonlinear crystals act as sources of signal and liquid crystals compensate for group velocity mismatch originating from nonlinear crystals. There are the advantages of the flexible, controllable birefringence of liquid crystals. Meanwhile, a method calculating the parameters of this type of structure is presented. To make it clear, an example is provided. Furthermore, the structure can also be shaped as a waveguide to support integration into other optical devices, applicable to all-optical processing systems.
|
|
In Situ Luminescence Measurement from Silica Glasses Irradiated with 20keV H$^{-}$ Ions
Ying-Jie Chu, Guang-Fu Wang, Meng-Lin Qiu, Mi Xu, Li Zheng
Chin. Phys. Lett. 2016, 33 (10):
106101
.
DOI: 10.1088/0256-307X/33/10/106101
A new low-energy negative-ion induced luminescence setup was recently developed at the injector of the GIC4117 $2\times1.7$ MV Tandem accelerator in Beijing Normal University. In situ luminescence measurements are performed on silica glass by using 20 keV H$^{-}$ ions at room temperature. Gauss fitting of the spectra revealed six overlapping components at about 2.7 eV, 2.4 eV, 1.9 eV, 1.8 eV, 4.2 eV, and 3.6 eV, which except for the new observed emission band at 3.6 eV are assigned to the creation of type II oxygen-deficient centers, E$'$ centers, non-bridging oxygen hole centers with different precursor states, and type-I oxygen-deficient centers. The fitted results of the saturation concentration show that self-trapped exciton recombination at type-II oxygen-deficient centers is the main luminescence emission process. The evolution of the luminescence intensity and full width at half maximums as a function of ion fluence is also discussed. It is found that the number of recombination centers reaches its maximum at lower fluence, and the area ratio between blue bands and red bands is much lower than that under high energy H$^{+}$ ion irradiation.
|
|
Superhard BC$_2$N: an Orthogonal Crystal Obtained by Transversely Compressing (3,0)-CNTs and (3,0)-BNNTs
Yu-Jie Hu, Sheng-Liang Xu, Hao Wang, Heng Liu, Xue-Chun Xu, Ying-Xiang Cai
Chin. Phys. Lett. 2016, 33 (10):
106102
.
DOI: 10.1088/0256-307X/33/10/106102
By means of density functional theory calculations, an orthogonal boron-carbon-nitrogen compound called (3,0)-BC$_2$N is predicted, which can be obtained by transversely compressing (3,0) carbon nanotubes (CNTs) and boron nitride nanotubes (BNNTs). Its structural stability, elastic properties, mechanical properties and electronic structure are systematically investigated. The results show that (3,0)-BC$_2$N is a superhard material with a direct bandgap. However, its similar structures, (3,0)-C and (3,0)-BN are indirect semiconductors. Strikingly, (3,0)-C is harder than diamond. We also simulate the x-ray diffraction of (3,0)-BC$_2$N to support future experimental investigations. In addition, our study shows that the transition from (3,0) CNTS and BNNTs to (3,0)-BC$_2$N is irreversible.
|
|
Direct Observation of Carrier Transportation Process in InGaAs/GaAs Multiple Quantum Wells Used for Solar Cells and Photodetectors
Qing-Ling Sun, Lu Wang, Yang Jiang, Zi-Guang Ma, Wen-Qi Wang, Ling Sun, Wen-Xin Wang, Hai-Qiang Jia, Jun-Ming Zhou, Hong Chen
Chin. Phys. Lett. 2016, 33 (10):
106801
.
DOI: 10.1088/0256-307X/33/10/106801
The resonant excitation is used to generate photo-excited carriers in quantum wells to observe the process of the carriers transportation by comparing the photoluminescence results between quantum wells with and without a p-n junction. It is observed directly in experiment that most of the photo-excited carriers in quantum wells with a p-n junction escape from quantum wells and form photocurrent rather than relax to the ground state of the quantum wells. The photo absorption coefficient of multiple quantum wells is also enhanced by a p-n junction. The results pave a novel way for solar cells and photodetectors making use of low-dimensional structure.
|
|
Controllable Synthesis and Magnetic Properties of Monodisperse Fe$_{3}$O$_{4}$ Nanoparticles
Zhu-Liang Wang, Hui Ma, Fang Wang, Min Li, Li-Guo Zhang, Xiao-Hong Xu
Chin. Phys. Lett. 2016, 33 (10):
107501
.
DOI: 10.1088/0256-307X/33/10/107501
Magnetite (Fe$_{3}$O$_{4}$) nanoparticles with different sizes and shapes are synthesized by the thermal decomposition method. Two approaches, non-injection one-pot and hot-injection methods, are designed to investigate the growth mechanism in detail. It is found that the size and shape of nanoparticles are determined by adjusting the precursor concentration and duration time, which can be well explained by the mechanism based on the LaMer model in our synthetic system. The monodisperse Fe$_{3}$O$_{4}$ nanoparticles have a mean diameter from 5 nm to 16 nm, and shape evolution from spherical to triangular and cubic. The magnetic properties are size-dependent, and Fe$_{3}$O$_{4}$ nanoparticles in small size about 5 nm exhibit superparamagnetic properties at room temperature and maximum saturation magnetization approaches to 78 emu/g, whereas Fe$_{3}$O$_{4}$ nanoparticles develop ferromagnetic properties when the diameter increases to about 16 nm.
|
|
Electron Spin Decoherence of Nitrogen-Vacancy Center Coupled to Multiple Spin Baths
Jian Xing, Yan-Chun Chang, Ning Wang, Gang-Qin Liu, Xin-Yu Pan
Chin. Phys. Lett. 2016, 33 (10):
107601
.
DOI: 10.1088/0256-307X/33/10/107601
We present the experimental results of nitrogen-vacancy (NV) electron spin decoherence, which are linked to the coexistence of electron spin bath of nitrogen impurity (P1 center) and $^{13}$C nuclear spin bath. In previous works, only one dominant decoherence source is studied: P1 electron spin bath for type-Ib diamond; or $^{13}$C nuclear spin bath for type-IIa diamond. In general, the thermal fluctuation from both spin baths can be eliminated by the Hahn echo sequence, resulting in a long coherence time ($T_2$) of about 400 μs. However, in a high-purity type-IIa diamond where $^{13}$C nuclear spin bath is the dominant decoherence source, dramatic decreases of NV electron spin $T_2$ time caused by P1 electron spin bath are observed under certain magnetic field. We further apply the engineered Hahn echo sequence to confirm the decoherence mechanism of multiple spin baths and quantitatively estimate the contribution of P1 electron spin bath. Our results are helpful to understand the NV decoherence mechanisms, which will benefit quantum computing and quantum metrology.
|
|
Analysis of Effect of Zn(O,S) Buffer Layer Properties on CZTS Solar Cell Performance Using AMPS
Ling-Yan Lin, Yu Qiu, Yu Zhang, Hao Zhang
Chin. Phys. Lett. 2016, 33 (10):
107801
.
DOI: 10.1088/0256-307X/33/10/107801
The Cu$_{2}$ZnSnS$_{4}$ (CZTS)-based solar cell is numerically simulated by a one-dimensional solar cell simulation software analysis of microelectronic and photonic structures (AMPS-1D). The device structure used in the simulation is Al/ZnO:Al/nZn(O,S)/pCZTS/Mo. The primary motivation of this simulation work is to optimize the composition in the ZnO$_{1-x}$S$_{x}$ buffer layer, which would yield higher conversion efficiency. By varying S/(S+O) ratio $x$, the conduction band offset (CBO) at CZTS/Zn(O,S) interface can range from $-$0.23 eV to 1.06 eV if the full range of the ratio is considered. The optimal CBO of 0.23 eV can be achieved when the ZnO$_{1-x}$S$_{x}$ buffer has an S/(S+O) ratio of 0.6. The solar cell efficiency first increases with increasing sulfur content and then decreases abruptly for $x>0.6$, which reaches the highest value of 17.55% by our proposed optimal sulfur content $x=0.6$. Our results provide guidance in dealing with the ZnO$_{1-x}$S$_{x}$ buffer layer deposition for high efficiency CZTS solar cells.
|
|
Durability of Ultra-Thin Silver Films and Silver–Gold Alloy Films under UV Irradiation
Ming Zhou, Yuan Cai, Yao-Peng Li, Ding-Quan Liu
Chin. Phys. Lett. 2016, 33 (10):
107803
.
DOI: 10.1088/0256-307X/33/10/107803
Silver films (Ag) and silver–gold films (Ag–Au) with thickness $\sim$15 nm are coated on Bk7 glasses through thermal evaporation. After doping gold of 5.2%, the grain size of the Ag film reduces from 13.6 nm to 9.1 nm, also the surface roughness decreases from 1.45 nm to 0.94 nm. A UV lamp is used as the irradiation light source to accelerate the corrosion process in the atmosphere. After 17 h irradiation, the pure silver film surface turns dark, and the transmittances reduce from 350 nm to 500 nm, while the Ag–Au film degrades much less, almost negligibly after UV radiation. Additional x-ray photoelectron spectroscopy and atomic force micrographs data are provided to show atomic content of films and their surface morphologies. It is suggested that small grain size and high packing density of alloy film prevent reaction of silver with oxygen in the atmosphere, which leads to high stability of the Ag–Au film.
|
|
Band Edge Emission Improvement by Energy Transfer in Hybrid III-Nitride/Organic Semiconductor Nanostructure
Fu-Long Jiang, Ya-Ying Liu, Yang-Yang Li, Peng Chen, Bin Liu, Zi-Li Xie, Xiang-Qian Xiu, Xue-Mei Hua, Ping Han, Yi Shi, Rong Zhang, You-Dou Zheng
Chin. Phys. Lett. 2016, 33 (10):
108101
.
DOI: 10.1088/0256-307X/33/10/108101
GaN nanorods are fabricated using inductively coupled plasma etching with Ni nano-island masks. The poly [2-methoxy-5-(2-ethyl)hexoxy-1,4-phenylenevinylene] (MEH-PPV)/GaN-nanorod hybrid structure is fabricated by depositing the MEH-PPV film on the GaN nanorods by using the spin-coating process. In the hybrid structure, the spatial separation is minimized to achieve high-efficiency non-radiative resonant energy transfer. Optical properties of a novel device consisting of MEH-PPV/GaN-nanorod hybrid structure is studied by analyzing photoluminescence (PL) spectra. Compared with the pure GaN nanorods, the PL intensity of the band edge emission of GaN in the MEH-PPV/GaN-nanorods is enhanced as much as three times, and the intensity of the yellow band is suppressed slightly. The obtained results are analyzed by energy transfer between the GaN nanorods and the MEH-PPV. An energy transfer model is proposed to explain the phenomenon.
|
|
High-Quality Bi$_{2}$Te$_{3}$ Single Crystalline Films on Flexible Substrates and Bendable Photodetectors
Yu-Cong Liu, Jia-Dong Chen, Hui-Yong Deng, Gu-Jin Hu, Xiao-Shuang Chen, Ning Dai
Chin. Phys. Lett. 2016, 33 (10):
108102
.
DOI: 10.1088/0256-307X/33/10/108102
Recently, great efforts have been made in the fabrication of arbitrary warped devices to satisfy the requirement of wearable and lightweight electronic products. Direct growth of high crystalline quality films on flexible substrates is the most desirable method to fabricate flexible devices owing to the advantage of simple and compatible preparation technology with current semiconductor devices, while it is a very challenging work, and usually amorphous, polycrystalline or discontinuous single crystalline films are achieved. Here we demonstrate the direct growth of high-quality Bi$_{2}$Te$_{3}$ single crystalline films on flexible polyimide substrates by the modified hot wall epitaxy technique. Experimental results reveal that adjacent crystallites are coherently coalesced to form a continuous film, although amounts of disoriented crystallites are generated due to fast growth rate. By inserting a quartz filter into the growth tube, the number density of disoriented crystallites is effectively reduced owing to the improved spiral interaction. Furthermore, flexible Bi$_{2}$Te$_{3}$ photoconductors are fabricated and exhibit strong near-infrared photoconductive response under different degrees of bending, which also confirms the obtained flexible films suitable for electronic applications.
|
|
Eu@Sc$_{20}$C$_{60}$: Magnetic Volleyballene
Hui-Yan Zhao, Hong-Man Ma, Jing Wang, Ying Liu
Chin. Phys. Lett. 2016, 33 (10):
108105
.
DOI: 10.1088/0256-307X/33/10/108105
Recently, a stable hollow Sc$_{20}$C$_{60}$ cage with $T_{h}$ point group symmetry has been proposed, due to its volleyball-like shape called volleyballene. Here the structural and electronic properties for Sc$_{20}$C$_{60}$ cage with a europium atom are further studied based on density functional theory. The results give two stable low-lying Eu@Sc$_{20}$C$_{60}$ isomers, called cage-a and cage-b, respectively, which still retain the cage-like shape of Sc$_{20}$C$_{60}$ volleyballene. After a Eu atom is encaged into the Sc$_{20}$C$_{60}$ volleyballene, the HOMO–LUMO gaps decrease from 1.47 eV of the Sc$_{20}$C$_{60}$ cage to 0.46 eV of cage-a and 0.21 eV of cage-b. Due to the half-filled 4$f$-electron orbital states of the Eu atom, the two low-lying Eu@Sc$_{20}$C$_{60}$ isomers have net magnetic moments of 7$\mu _{\rm B}$. This study further provides the possible applications for the Sc$_{20}$C$_{60}$ volleyballene, and enriches the species of magnetic cage-like molecules, which provides more information for magnetic storage and magnetic control.
|
|
Rectification of Ion Current Determined by the Nanopore Geometry: Experiments and Modelling
Da-Ming Zhou, Yun-Sheng Deng, Cui-Feng Ying, Yue-Chuan Zhang, Yan-Xiao Feng, Qi-Meng Huang, Li-Yuan Liang, De-Qiang Wang
Chin. Phys. Lett. 2016, 33 (10):
108501
.
DOI: 10.1088/0256-307X/33/10/108501
We provide a way to precisely control the geometry of a SiN$_x$ nanopore by adjusting the applied electric pulse. The pore is generated by applying the current pulse across a SiN$_x$ membrane, which is immersed in potassium chloride solution. We can generate single conical and cylindrical pores with different electric pulses. A theoretical model based on the Poisson and Nernst–Planck equations is employed to simulate the ion transport properties in the channel. In turn, we can analyze pore geometries by fitting the experimental current-voltage ($I$–$V$) curves. For the conical pores with a pore size of 0.5–2 nm in diameter, the slope angles are around $-2.5^{\circ}$ to $-10^{\circ}$. Moreover, the pore orifice can be enlarged slightly by additional repeating pulses. The conic pore lumen becomes close to a cylindrical channel, resulting in a symmetry $I$–$V$ transport under positive and negative biases. A qualitative understanding of these effects will help us to prepare useful solid-nanopores as demanded.
|
|
GaInP/GaInAs/GaInNAs/Ge Four-Junction Solar Cell Grown by Metal Organic Chemical Vapor Deposition with High Efficiency
Yang Zhang, Qing Wang, Xiao-Bin Zhang, Zhen-Qi Liu, Bing-Zhen Chen, Shan-Shan Huang, Na Peng, Zhi-Yong Wang
Chin. Phys. Lett. 2016, 33 (10):
108801
.
DOI: 10.1088/0256-307X/33/10/108801
We directly grow a lattice matched GaInP/GaInAs/GaInNAs/Ge (1.88 eV/1.42 eV/1.05 eV/0.67 eV) four-junction (4J) solar cell on a Ge substrate by the metal organic chemical vapor deposition technology. To solve the current limit of the GaInNAs sub cell, we design three kinds of anti-reflection coatings and adjust the base region thickness of the GaInNAs sub cell. Developed by a series of experiments, the external quantum efficiency of the GaInNAs sub cell exceeds 80%, and its current density reaches 11.24 mA/cm$^{2}$. Therefore the current limit of the 4J solar cell is significantly improved. Moreover, we discuss the difference of test results between 4J and GaInP/GaInAs/Ge solar cells under the 1 sun AM0 spectrum.
|
|
Network Aggregation Process in Multilayer Air Transportation Networks
Jian Jiang, Rui Zhang, Long Guo, Wei Li, Xu Cai
Chin. Phys. Lett. 2016, 33 (10):
108901
.
DOI: 10.1088/0256-307X/33/10/108901
The air transportation network, one of the common multilayer complex systems, is composed of a collection of individual airlines, and each airline corresponds to a different layer. An important question is then how many airlines are really necessary to represent the optimal structure of a multilayer air transportation system. Here we take the Chinese air transportation network (CATN) as an example to explore the nature of multiplex systems through the procedure of network aggregation. Specifically, we propose a series of structural measures to characterize the CATN from the multilayered to the aggregated network level. We show how these measures evolve during the network aggregation process in which layers are gradually merged together and find that there is an evident structural transition that happened in the aggregated network with nine randomly chosen airlines merged, where the network features and construction cost of this network are almost equivalent to those of the present CATN with twenty-two airlines under this condition. These findings could shed some light on network structure optimization and management of the Chinese air transportation system.
|
41 articles
|