Chin. Phys. Lett.  2016, Vol. 33 Issue (10): 100403    DOI: 10.1088/0256-307X/33/10/100403
GENERAL |
Stability Analysis of the Viscous Polytropic Dark Energy Model in Einstein Cosmology
Yue-Yi Wang, Ju-Hua Chen**, Yong-Jiu Wang
College of Physics and Information Science, Hunan Normal University, Changsha 410081
Cite this article:   
Yue-Yi Wang, Ju-Hua Chen, Yong-Jiu Wang 2016 Chin. Phys. Lett. 33 100403
Download: PDF(542KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The viscous polytropic gas model as one model of dark energy is hot-spot and keystone to the modern cosmology. We study the evolution of the viscous polytropic dark energy model interacting with the dark matter in the Einstein cosmology. Setting the autonomous dynamical system for the interacting viscous polytropic dark energy with dark matter and using the phase space analysis method to investigate the dynamical evolution and its critical stability, we find that the viscosity property of the dark energy creates a benefit for the stable critical dynamical evolution of the interaction model between dark matter and dark energy in the flat Friedmann–Robertson–Walker universe and the viscosity of dark energy will soften the coincidence problem just like the interacting dark energy model.
Received: 15 July 2016      Published: 27 October 2016
PACS:  04.70.Bw (Classical black holes)  
  04.25.-g (Approximation methods; equations of motion)  
  04.70.-s (Physics of black holes)  
  97.60.Lf (Black holes)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 10873004, the State Key Development Program for Basic Research Program of China under Grant No 2010CB832803, and the Program for Changjiang Scholars and Innovative Research Team in University under Grant No IRT0964.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/10/100403       OR      https://cpl.iphy.ac.cn/Y2016/V33/I10/100403
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yue-Yi Wang
Ju-Hua Chen
Yong-Jiu Wang
[1]Peebles P J E and Ratra B 2003 Rev. Mod. Phys. 75 559
[2]Perlmutter S, Aldering G and Goldhaber G 1999 Astrophys. J. 517 565
[3]Chimento L P, Jakubi A S and Pavon D 2003 Phys. Rev. D 67 083513
[4]Hu B and Ling Y 2006 Phys. Rev. D 73 123510
[5]Cai R G and Wang A 2005 J. Cosmol. Astropart. Phys. 2005 002
[6]Chen X, Gong Y and Saridakis E N 2014 Int. J. Theor. Phys. 53 469
[7]Weinberg S 1989 Rev. Mod. Phys. 61 1
[8]Ratra B and Peebles P J E 1988 Phys. Rev. D 37 3406
[9]Zlatev I, Wang L and Steinhardt P J 1999 Phys. Rev. Lett. 82 896
[10]Guo Z K, Piao Y S and Zhang X 2005 Phys. Lett. B 608 177
[11]Nikjou A, Baghbani R and Darvishi M T 2013 Astrophys. Space Sci. 345 421
[12]Caldwell R R A 2002 Phys. Lett. B 545 23
[13]Nesseris S and Perivolaropoulos L 2004 Phys. Rev. D 70 123529
[14]Scherrer R J 2004 Phys. Rev. Lett. 93 011301
[15]Chiba T, Okabe T and Yamaguchi M 2000 Phys. Rev. D 62 023511
[16]Armendariz P C, Mukhanov V and Steinhardt P J 2000 Phys. Rev. Lett. 85 4438
[17]Setare M R and Kamali V 2013 Phys. Rev. D 87 083524
[18]Sen A 2002 J. High Energy Phys. 0204 048
[19]Padmanabhan T 2002 Phys. Rev. D 66 021301
[20]Bellazzini B, Csáki C and Hubisz J 2014 Eur. Phys. J. C 74 2790
[21]Bento M C, Bertolami O and Sen A A 2002 Phys. Rev. D 66 043507
[22]Bili? N, Tupper G B and Viollier R D 2002 Phys. Lett. B 535 17
[23]Karami K, Ghaffari S and Fehri J 2009 Eur. Phys. J. C 64 85
[24]Linder E V 2005 Phys. Rev. D 72 043529
[25]Sahni V and Shtanov Y 2003 J. Cosmol. Astropart. Phys. 0311 014
[26]Talbot M 1991 Holographic Universe (London: HarperCollins Publishers) vol 1 chap 4 p 327
[27]Li M 2004 Phys. Lett. B 603 1
[28]Ho?ava P and Minic D 2000 Phys. Rev. Lett. 85 1610
[29]Wei H and Cai R G 2008 Phys. Lett. B 660 113
[30]Führer F 2016 J. Cosmol. Astropart. Phys. 1602 032
[31]Chatterjee S and Bhui B 1990 Astrophys. Space Sci. 167 61
[32]Banergee A, Bhui B and Chatterjee S 1990 Astrophys. J. 358 23
[33]Singh G P, Deshpande R V and Singh 2004 Pramana 63 937
[34]Murphy G L 1973 Phys. Rev. D 8 4231
[35]Bali R and Dave S 2002 Astrophys. Space Sci. 282 461
[36]Katore S D, Shaikh A Y, Kapse D V and Bhaskar S A 2011 Int. J. Theor. Phys. 50 2644
[37]Saadat H and Pourhassan B 2013 Astrophys. Space Sci. 343 783
[38]Sadeghi J, Khurshudyan M and Hakobyan M 2013 Adv. High Energy Phys. 2013 759804
[39]Cai R G and Kim S P 2005 J. High Energy Phys. 0502 050
Related articles from Frontiers Journals
[1] Y. Kenedy Meitei, T. Ibungochouba Singh, I. Ablu Meitei. Quantization of Horizon Area of Kerr–Newman–de Sitter Black Hole[J]. Chin. Phys. Lett., 2019, 36(3): 100403
[2] M. Azam, A. Aslam. Accretion onto the Magnetically Charged Regular Black Hole[J]. Chin. Phys. Lett., 2017, 34(7): 100403
[3] Hao Tang, Yu Song, Rui-Hong Yue, Cheng-Yi Sun. Destroying a Peldan Electrostatic Solution Black Hole[J]. Chin. Phys. Lett., 2017, 34(4): 100403
[4] Yu Song, Hao Tang, De-Cheng Zou, Rui-Hong Yue, Cheng-Yi Sun. Destroying Extremal Kerr–Newman-AdS Black Holes with Test Particles[J]. Chin. Phys. Lett., 2017, 34(3): 100403
[5] Jun-Jin Peng, Wen-Chang Xiang, Shao-Hong Cai. Abbott–Deser–Tekin Charge of Dilaton Black Holes with Squashed Horizons[J]. Chin. Phys. Lett., 2016, 33(08): 100403
[6] Wen-Lin Tang, Zi-Ren Luo, Yun-Kau Lau. Generalised Error Functions from the Kerr Metric[J]. Chin. Phys. Lett., 2016, 33(03): 100403
[7] P. K. Sahoo, K. L. Mahanta, D. Goit, A. K. Sinha, S. S. Xulu, U. R. Das, A. Prasad, R. Prasad. Einstein Energy-Momentum Complex for a Phantom Black Hole Metric[J]. Chin. Phys. Lett., 2015, 32(02): 100403
[8] HE Guan-Sheng, LIN Wen-Bin. The Exact Harmonic Metric for a Moving Reissner–Nordstr?m Black Hole[J]. Chin. Phys. Lett., 2014, 31(09): 100403
[9] HUANG Qi-Hong, CHEN Ju-Hua, WANG Yong-Jiu. Chaotic Motion of a Charged Particle around a Weakly Magnetized Schwarzschild Black Hole Containing Cosmic String[J]. Chin. Phys. Lett., 2014, 31(06): 100403
[10] ZHAO Zi-Xu, PAN Qi-Yuan, JING Ji-Liang. Holographic Superconductor Models with RF2 Corrections[J]. Chin. Phys. Lett., 2013, 30(12): 100403
[11] LIU Chang-Qing. Collision of Two General Geodesic Particles around a Kerr–Newman Black Hole[J]. Chin. Phys. Lett., 2013, 30(10): 100403
[12] G. Abbas, R. M. Ramzan. Thermodynamics of Phantom Energy Accreting onto a Black Hole in Einstein–Power–Maxwell Gravity[J]. Chin. Phys. Lett., 2013, 30(10): 100403
[13] S. S. Zade. Dynamics of Apparent Horizons in (N+2)-Dimensional Space-Times[J]. Chin. Phys. Lett., 2012, 29(11): 100403
[14] Gamal G. L. Nashed*. Spherically Symmetric Solutions on a Non-Trivial Frame in f(T) Theories of Gravity[J]. Chin. Phys. Lett., 2012, 29(5): 100403
[15] M. Sharif**, G. Abbas. Phantom Energy Accretion by a Stringy Charged Black Hole[J]. Chin. Phys. Lett., 2012, 29(1): 100403
Viewed
Full text


Abstract