Chin. Phys. Lett.  2015, Vol. 32 Issue (09): 090601    DOI: 10.1088/0256-307X/32/9/090601
GENERAL |
First Evaluation and Frequency Measurement of the Strontium Optical Lattice Clock at NIM
LIN Yi-Ge1**, WANG Qiang1,2, LI Ye1,2, MENG Fei1, LIN Bai-Ke1,2, ZANG Er-Jun1, SUN Zhen1, FANG Fang1, LI Tian-Chu1, FANG Zhan-Jun1
1Division of Time and Frequency, National Institute of Metrology (NIM), Beijing 100013
2Department of Precision Instrument, Tsinghua University, Beijing 100084
Cite this article:   
LIN Yi-Ge, WANG Qiang, LI Ye et al  2015 Chin. Phys. Lett. 32 090601
Download: PDF(546KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

An optical lattice clock based on 87Sr is built at National Institute of Metrology (NIM) of China. The systematic frequency shifts of the clock are evaluated with a total uncertainty of 2.3×10−16. To measure its absolute frequency with respect to NIM's cesium fountain clock NIM5, the frequency of a flywheel H-maser of NIM5 is transferred to the Sr laboratory through a 50-km-long fiber. A fiber optical frequency comb, phase-locked to the reference frequency of this H-maser, is used for the optical frequency measurement. The absolute frequency of this Sr clock is measured to be 429228004229873.7(1.4) Hz.

Received: 31 July 2015      Published: 02 October 2015
PACS:  06.30.Ft (Time and frequency)  
  42.62.Fi (Laser spectroscopy)  
  32.70.Jz (Line shapes, widths, and shifts)  
  37.10.Jk (Atoms in optical lattices)  
  42.62.Eh (Metrological applications; optical frequency synthesizers for precision spectroscopy)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/9/090601       OR      https://cpl.iphy.ac.cn/Y2015/V32/I09/090601
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIN Yi-Ge
WANG Qiang
LI Ye
MENG Fei
LIN Bai-Ke
ZANG Er-Jun
SUN Zhen
FANG Fang
LI Tian-Chu
FANG Zhan-Jun

[1] Chou C W et al 2010 Phys. Rev. Lett. 104 070802
[2] Bloom B J et al 2014 Nature 506 71
[3] Nicholson T L et al 2015 Nat. Commun. 6 6896
[4] Ushijima I et al 2015 Nat. Photon. 9 185
[5] Blatt S et al 2008 Phys. Rev. Lett. 100 140801
[6] Wang S K et al 2009 Chin. Phys. Lett. 26 093202
[7] Lin Y G et al 2013 Chin. Phys. Lett. 30 014206
[8] Li Y et al 2014 Chin. Phys. Lett. 31 024207
[9] Wang Q et al 2014 Chin. Phys. Lett. 31 123201
[10] Blatt S et al 2009 Phys. Rev. A 80 052703
[11] Swallows M D et al 2011 Science 331 1043
[12] Nicholson T L et al 2012 Phys. Rev. Lett. 109 230801
[13] Yudin V I et al 2011 Phys. Rev. Lett. 107 030801
[14] Middelmann T, Falke S, Lisdat C and Sterr U 2012 Phys. Rev. Lett. 109 263004
[15] Ido T and Katori H 2003 Phys. Rev. Lett. 91 053001
[16] Barber Z et al 2008 Phys. Rev. Lett. 100 103002
[17] Campbell G K et al 2009 Science 324 360
[18] Swallows M D et al 2010 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57 574
[19] Boyd M M et al 2006 Science 314 1430
[20] Falke S et al 2011 Metrologia 48 399
[21] Westergaard P G et al 2011 arXiv:1102.1797
[22] Baillard X et al 2007 Opt. Lett. 32 1812
[23] Lodewyck J et al 2012 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59 411
[24] Pollack S E et al 2010 Phys. Rev. D 81 021101
[25] Wang B et al 2012 Sci. Rep. 2 556
[26] Campbell G K et al 2008 Metrologia 45 539
[27] Hong F L et al 2009 Opt. Lett. 34 692
[28] Yamaguchi A et al 2012 Appl. Phys. Express 5 022701
[29] Le Targat R et al 2013 Nat. Commun. 4 2109
[30] Falke S et al 2014 New J. Phys. 16 073023
[31] Akamatsu D et al 2014 Appl. Phys. Express 7 012401

Related articles from Frontiers Journals
[1] Bing-Kun Lu, Zhen Sun, Tao Yang, Yi-Ge Lin, Qiang Wang, Ye Li, Fei Meng, Bai-Ke Lin, Tian-Chu Li, and Zhan-Jun Fang. Improved Evaluation of BBR and Collisional Frequency Shifts of NIM-Sr2 with $7.2 \times 10^{-18}$ Total Uncertainty[J]. Chin. Phys. Lett., 2022, 39(8): 090601
[2] Xiang Zhang, Xue Deng, Qi Zang, Dongdong Jiao, Jing Gao, Dan Wang, Qian Zhou, Jie Liu, Guanjun Xu, Ruifang Dong, Tao Liu, and Shougang Zhang. Coherent Optical Frequency Transfer via a 490 km Noisy Fiber Link[J]. Chin. Phys. Lett., 2022, 39(4): 090601
[3] Dong-Jie Wang, Xiang Zhang, Jie Liu, Dong-Dong Jiao, Xue Deng, Jing Gao, Qi Zang, Dan Wang, Tao Liu, Rui-Fang Dong, and Shou-Gang Zhang. Novel Polarization Control Approach to Long-Term Fiber-Optic Frequency Transfer[J]. Chin. Phys. Lett., 2020, 37(9): 090601
[4] Si-Jia Chao, Kai-Feng Cui, Shao-Mao Wang, Jian Cao, Hua-Lin Shu, Xue-Ren Huang. Observation of $^1\!S_0$$\rightarrow$$^3\!P_0$ Transition of a $^{40}$Ca$^+$-$^{27}$Al$^+$ Quantum Logic Clock[J]. Chin. Phys. Lett., 2019, 36(12): 090601
[5] Wen-Bing Li, Qiang Hao, Yuan-Bo Du, Shao-Qing Huang, Peter Yun, Ze-Huang Lu. Demonstration of a Sub-Sampling Phase Lock Loop Based Microwave Source for Reducing Dick Effect in Atomic Clocks[J]. Chin. Phys. Lett., 2019, 36(7): 090601
[6] Chao-qun Ma, Li-Fei Wu, Jiao Gu, Yan-He Chen, Guo-Qing Chen. Delay Effect on Coherent Transfer of Optical Frequency Based on a Triple-Pass Scheme[J]. Chin. Phys. Lett., 2018, 35(8): 090601
[7] Yu-Xin Zhuang, Dai-Ting Shi, Da-Wei Li, Yi-Gen Wang, Xiao-Na Zhao, Jian-Ye Zhao, Zhong Wang. Erratum: An Accurate Frequency Control Method and Atomic Clock Based on Coherent Population Beating Phenomenon [Chin. Phys. Lett. 33(2016)040601][J]. Chin. Phys. Lett., 2017, 34(10): 090601
[8] Zhao-Min Jia, Xu-Hai Yang, Bao-Qi Sun, Xiao-Ping Zhou, Bo Xiang, Xin-Yu Dou. Direct Digital Frequency Control Based on the Phase Step Change Characteristic between Signals[J]. Chin. Phys. Lett., 2017, 34(9): 090601
[9] Zhao-Yang Tai, Lu-Lu Yan, Yan-Yan Zhang, Xiao-Fei Zhang, Wen-Ge Guo, Shou-Gang Zhang, Hai-Feng Jiang. Transportable 1555-nm Ultra-Stable Laser with Sub-0.185-Hz Linewidth[J]. Chin. Phys. Lett., 2017, 34(9): 090601
[10] Jie Zhang, Ke Deng, Jun Luo, Ze-Huang Lu. Direct Laser Cooling Al$^+$ Ion Optical Clocks[J]. Chin. Phys. Lett., 2017, 34(5): 090601
[11] Hui Liu, Xi Zhang, Kun-Liang Jiang, Jin-Qi Wang, Qiang Zhu, Zhuan-Xian Xiong, Ling-Xiang He, Bao-Long Lyu. Realization of Closed-Loop Operation of Optical Lattice Clock Based on $^{171}$Yb[J]. Chin. Phys. Lett., 2017, 34(2): 090601
[12] Xue Deng, Jie Liu, Dong-Dong Jiao, Jing Gao, Qi Zang, Guan-Jun Xu, Rui-Fang Dong, Tao Liu, Shou-Gang Zhang. Coherent Transfer of Optical Frequency over 112km with Instability at the 10$^{-20}$ Level[J]. Chin. Phys. Lett., 2016, 33(11): 090601
[13] Meng-Jiao Zhang, Hui Liu, Xi Zhang, Kun-Liang Jiang, Zhuan-Xian Xiong, Bao-Long LÜ, Ling-Xiang He. Hertz-Level Clock Spectroscopy of $^{171}$Yb Atoms in a One-Dimensional Optical Lattice[J]. Chin. Phys. Lett., 2016, 33(07): 090601
[14] Kang-Kang Liu, Ru-Chen Zhao, Wei Gou, Xiao-Hu Fu, Hong-Li Liu, Shi-Qi Yin, Jian-Fang Sun, Zhen Xu, Yu-Zhu Wang. A Single Folded Beam Magneto-Optical Trap System for Neutral Mercury Atoms[J]. Chin. Phys. Lett., 2016, 33(07): 090601
[15] Yu-Xin Zhuang, Dai-Ting Shi, Da-Wei Li, Yi-Gen Wang, Xiao-Na Zhao, Jian-Ye Zhao, Zhong Wang. An Accurate Frequency Control Method and Atomic Clock Based on Coherent Population Beating Phenomenon[J]. Chin. Phys. Lett., 2016, 33(04): 090601
Viewed
Full text


Abstract