Chin. Phys. Lett.  2015, Vol. 32 Issue (09): 090501    DOI: 10.1088/0256-307X/32/9/090501
GENERAL |
A Multifractal Detrended Fluctuation Analysis of the Ising Financial Markets Model with Small World Topology
ZHANG Ang-Hui, LI Xiao-Wen, SU Gui-Feng, ZHANG Yi**
Department of Physics, Shanghai Normal University, Shanghai 200234
Cite this article:   
ZHANG Ang-Hui, LI Xiao-Wen, SU Gui-Feng et al  2015 Chin. Phys. Lett. 32 090501
Download: PDF(929KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We present a multifractal detrended fluctuation analysis (MFDFA) of the time series of return generated by our recently-proposed Ising financial market model with underlying small world topology. The result of the MFDFA shows that there exists obvious multifractal scaling behavior in produced time series. We compare the MFDFA results for original time series with those for shuffled series, and find that its multifractal nature is due to two factors: broadness of probability density function of the series and different correlations in small- and large-scale fluctuations. This may provide new insight to the problem of the origin of multifractality in financial time series.

Received: 09 June 2015      Published: 02 October 2015
PACS:  05.45.Tp (Time series analysis)  
  05.45.Df (Fractals)  
  89.65.Gh (Economics; econophysics, financial markets, business and management)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/9/090501       OR      https://cpl.iphy.ac.cn/Y2015/V32/I09/090501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Ang-Hui
LI Xiao-Wen
SU Gui-Feng
ZHANG Yi

[1] Mantegna R N and Stanley H E 1999 An Introduction to Econophysics: Correlations and Complexity in Finance (Cambridge: Cambridge University Press)
[2] Bouchaud J P and Potters M 2000 Theory of Financial Risk and Derivative Pricing: From Statistical Physics to Risk Management (Cambridge: Cambridge University Press)
[3] Voit J 2005 The Statistical Mechanics of Financial Markets (Heidelberg: Springer-Verlag)
[4] Cont R 2001 Quant. Finance 1 223
[5] Dacorogna M, Geny R, Muler U, Olsen R and Pictet O 2001 An Introduction to High-Frequency Finance (London: Academic Press)
[6] Parisi G and Frisch U 1985 Turbulence Predictability Geophys. Fluid Dyn. Clim. Dyn. (Amsterdam: North-Holland) p 84
[7] Sornette D 2004 Critical Phenomena in Natural Sciences (Berlin: Springer-Verlag)
[8] Fisher A, Calvet L and Mandelbrot B B 1997 Cowles Foundation Discussion p 1165
[9] Mandelbrot B B 1997 Fractals and Scaling in Finance (New York: Springer-Verlag)
[10] Vandewalle N and Ausloos M 1997 Physica A 246 454
       Vandewalle N and Ausloos M 1998 Eur. Phys. J. B 4 257
       Vandewalle N and Ausloos M 1998 Int. J. Mod. Phys. C 9 711
[11] Ivanova K and Ausloos M 1999 Eur. Phys. J. B 8 665
       Ivanova K and Ausloos M 1999 Eur. Phys. J. B 12 613
[12] Schmitt F, Schertzer D and Lovejoy S 1999 Appl. Stoch. Model Data Anal. 15 29
[13] Bouchaud J P, Potters M and Meyer M 2000 Eur. Phys. J. B 17 595
[14] Muzy J F, Delour J and Bacry E 2000 Eur. Phys. J. B 17 537
[15] Calvet L and Fisher A 2002 Rev. Economics Statistics 84 381
[16] Matia K, Ashkenazy Y and Stanley H E 2003 Europhys. Lett. 61 422
[17] Jun W C, Oh G and Kim S 2006 Phys. Rev. E 73 066128
[18] Jiang Z Q and Zhou W X 2008 Physica A 387 3605
       Jiang Z Q and Zhou W X 2008 Physica A 387 4881
[19] Zhou W X 2012 Chaos Solitons Fractals 45 147
[20] Barunik J and Kristoufek L 2010 Physica A 389 3844
[21] Oh G, Eom C, Havlin S, Jung W S, Wang F, Stanley H E and Kim S 2012 Eur. Phys. J. B 85 214
[22] Zhang Y and Li X 2015 Eur. Phys. J. B 88 61
[23] Zhao H, Zhang A, Zhou J, Su G and Zhang Y 2013 Europhys. Lett. 101 18001
[24] Sornette D and Zhou W X 2006 Physica A 370 704
[25] Zhou W X and Sornette D 2007 Eur. Phys. J. B 55 175
[26] Feder J 1988 Fractals (New York: Plenum Press)
[27] Barabási A L and Vicsek T 1991 Phys. Rev. A 44 2730
[28] Evertsz C J G and Mandelbrot B B 1992 Chaos Fractals: New Front. Sci. (New York: Springer-Verlag) p 921
[29] Bacry E, Delour J and Muzy J F 2001 Phys. Rev. E 64 026103
[30] Kantelhardt J W, Zschiegner S A, Koscielny-Bunde E, Havlin S, Bunde A and Stanley H E 2002 Physica A 316 87
[31] Peng C K, Buldyrev S V, Havlin S, Simons M, Stanley H E and Goldberger A L 1994 Phys. Rev. E 49 1685

Related articles from Frontiers Journals
[1] Jia-Chen Zhang , Wei-Kai Ren , and Ning-De Jin. Rescaled Range Permutation Entropy: A Method for Quantifying the Dynamical Complexity of Extreme Volatility in Chaotic Time Series[J]. Chin. Phys. Lett., 2020, 37(9): 090501
[2] Ying Du, Jiaqi Liu, Shihui Fu. Information Transmitting and Cognition with a Spiking Neural Network Model[J]. Chin. Phys. Lett., 2018, 35(9): 090501
[3] Sheng-Li Zhu, Lu Gan. Specific Emitter Identification Based on Visibility Graph Entropy[J]. Chin. Phys. Lett., 2018, 35(3): 090501
[4] Yi Ji, Hong-Bo Xie. Generalized Multivariate Singular Spectrum Analysis for Nonlinear Time Series De-Noising and Prediction[J]. Chin. Phys. Lett., 2017, 34(12): 090501
[5] Sheng-Li Zhu, Lu Gan. Chaos Identification Based on Component Reordering and Visibility Graph[J]. Chin. Phys. Lett., 2017, 34(5): 090501
[6] Ya-Tong Zhou, Yu Fan, Zi-Yi Chen, Jian-Cheng Sun. Multimodality Prediction of Chaotic Time Series with Sparse Hard-Cut EM Learning of the Gaussian Process Mixture Model[J]. Chin. Phys. Lett., 2017, 34(5): 090501
[7] Jian Jiang, Hong-Bo Xie. Denoising Nonlinear Time Series Using Singular Spectrum Analysis and Fuzzy Entropy[J]. Chin. Phys. Lett., 2016, 33(10): 090501
[8] Wei Zheng, Qian Pan, Chen Sun, Yu-Fan Deng, Xiao-Kang Zhao, Zhao Kang. Fractal Analysis of Mobile Social Networks[J]. Chin. Phys. Lett., 2016, 33(03): 090501
[9] HAO Qing-Yang, JIN Ning-De, HAN Yun-Feng, GAO Zhong-Ke, ZHAI Lu-Sheng. Multi-Scale Time Asymmetry for Detecting the Breakage of Slug Flow Structure[J]. Chin. Phys. Lett., 2014, 31(12): 090501
[10] QU Hua, MA Wen-Tao, ZHAO Ji-Hong, CHEN Ba-Dong. Kernel Least Mean Kurtosis Based Online Chaotic Time Series Prediction[J]. Chin. Phys. Lett., 2013, 30(11): 090501
[11] FAN Chun-Ling, JIN Ning-De, CHEN Xiu-Ting, GAO Zhong-Ke. Multi-Scale Permutation Entropy: A Complexity Measure for Discriminating Two-Phase Flow Dynamics[J]. Chin. Phys. Lett., 2013, 30(9): 090501
[12] ZHANG Xin-Wang, JIN Ning-De, GAO Zhong-Ke, ZHAI Lu-Sheng . Local Property of Recurrence Network for Investigating Gas-Liquid Two-Phase Flow Characteristics[J]. Chin. Phys. Lett., 2013, 30(5): 090501
[13] JIANG Jian, WANG Ru, Pezeril Michel, Wang Qiuping Alexandre. Long Division Unites or Long Union Divides: a Model for Social Network Evolution[J]. Chin. Phys. Lett., 2013, 30(3): 090501
[14] YAN Chuan-Kui, WANG Ru-Bin. Non-identical Neural Network Synchronization Study Based on an Adaptive Learning Rule of Synapses[J]. Chin. Phys. Lett., 2012, 29(9): 090501
[15] QU Jing-Yi, and WANG Ru-Bin. Dynamics of a Cortical Neural Network Based on a Simple Model[J]. Chin. Phys. Lett., 2012, 29(8): 090501
Viewed
Full text


Abstract