GENERAL |
|
|
|
|
A Multifractal Detrended Fluctuation Analysis of the Ising Financial Markets Model with Small World Topology |
ZHANG Ang-Hui, LI Xiao-Wen, SU Gui-Feng, ZHANG Yi** |
Department of Physics, Shanghai Normal University, Shanghai 200234 |
|
Cite this article: |
ZHANG Ang-Hui, LI Xiao-Wen, SU Gui-Feng et al 2015 Chin. Phys. Lett. 32 090501 |
|
|
Abstract We present a multifractal detrended fluctuation analysis (MFDFA) of the time series of return generated by our recently-proposed Ising financial market model with underlying small world topology. The result of the MFDFA shows that there exists obvious multifractal scaling behavior in produced time series. We compare the MFDFA results for original time series with those for shuffled series, and find that its multifractal nature is due to two factors: broadness of probability density function of the series and different correlations in small- and large-scale fluctuations. This may provide new insight to the problem of the origin of multifractality in financial time series.
|
|
Received: 09 June 2015
Published: 02 October 2015
|
|
PACS: |
05.45.Tp
|
(Time series analysis)
|
|
05.45.Df
|
(Fractals)
|
|
89.65.Gh
|
(Economics; econophysics, financial markets, business and management)
|
|
|
|
|
[1] Mantegna R N and Stanley H E 1999 An Introduction to Econophysics: Correlations and Complexity in Finance (Cambridge: Cambridge University Press)
[2] Bouchaud J P and Potters M 2000 Theory of Financial Risk and Derivative Pricing: From Statistical Physics to Risk Management (Cambridge: Cambridge University Press)
[3] Voit J 2005 The Statistical Mechanics of Financial Markets (Heidelberg: Springer-Verlag)
[4] Cont R 2001 Quant. Finance 1 223
[5] Dacorogna M, Geny R, Muler U, Olsen R and Pictet O 2001 An Introduction to High-Frequency Finance (London: Academic Press)
[6] Parisi G and Frisch U 1985 Turbulence Predictability Geophys. Fluid Dyn. Clim. Dyn. (Amsterdam: North-Holland) p 84
[7] Sornette D 2004 Critical Phenomena in Natural Sciences (Berlin: Springer-Verlag)
[8] Fisher A, Calvet L and Mandelbrot B B 1997 Cowles Foundation Discussion p 1165
[9] Mandelbrot B B 1997 Fractals and Scaling in Finance (New York: Springer-Verlag)
[10] Vandewalle N and Ausloos M 1997 Physica A 246 454
Vandewalle N and Ausloos M 1998 Eur. Phys. J. B 4 257
Vandewalle N and Ausloos M 1998 Int. J. Mod. Phys. C 9 711
[11] Ivanova K and Ausloos M 1999 Eur. Phys. J. B 8 665
Ivanova K and Ausloos M 1999 Eur. Phys. J. B 12 613
[12] Schmitt F, Schertzer D and Lovejoy S 1999 Appl. Stoch. Model Data Anal. 15 29
[13] Bouchaud J P, Potters M and Meyer M 2000 Eur. Phys. J. B 17 595
[14] Muzy J F, Delour J and Bacry E 2000 Eur. Phys. J. B 17 537
[15] Calvet L and Fisher A 2002 Rev. Economics Statistics 84 381
[16] Matia K, Ashkenazy Y and Stanley H E 2003 Europhys. Lett. 61 422
[17] Jun W C, Oh G and Kim S 2006 Phys. Rev. E 73 066128
[18] Jiang Z Q and Zhou W X 2008 Physica A 387 3605
Jiang Z Q and Zhou W X 2008 Physica A 387 4881
[19] Zhou W X 2012 Chaos Solitons Fractals 45 147
[20] Barunik J and Kristoufek L 2010 Physica A 389 3844
[21] Oh G, Eom C, Havlin S, Jung W S, Wang F, Stanley H E and Kim S 2012 Eur. Phys. J. B 85 214
[22] Zhang Y and Li X 2015 Eur. Phys. J. B 88 61
[23] Zhao H, Zhang A, Zhou J, Su G and Zhang Y 2013 Europhys. Lett. 101 18001
[24] Sornette D and Zhou W X 2006 Physica A 370 704
[25] Zhou W X and Sornette D 2007 Eur. Phys. J. B 55 175
[26] Feder J 1988 Fractals (New York: Plenum Press)
[27] Barabási A L and Vicsek T 1991 Phys. Rev. A 44 2730
[28] Evertsz C J G and Mandelbrot B B 1992 Chaos Fractals: New Front. Sci. (New York: Springer-Verlag) p 921
[29] Bacry E, Delour J and Muzy J F 2001 Phys. Rev. E 64 026103
[30] Kantelhardt J W, Zschiegner S A, Koscielny-Bunde E, Havlin S, Bunde A and Stanley H E 2002 Physica A 316 87
[31] Peng C K, Buldyrev S V, Havlin S, Simons M, Stanley H E and Goldberger A L 1994 Phys. Rev. E 49 1685 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|