GENERAL |
|
|
|
|
Measurement of Refractive Index Ranging from 1.42847 to 2.48272 at 1064 nm Using a Quasi-Common-Path Laser Feedback System |
XU Ling, TAN Yi-Dong, ZHANG Shu-Lian**, SUN Li-Qun |
The State Key Lab of Precision Measurement Technology and Instrument, Department of Precision Instruments, Tsinghua University, Beijing 100084
|
|
Cite this article: |
XU Ling, TAN Yi-Dong, ZHANG Shu-Lian et al 2015 Chin. Phys. Lett. 32 090701 |
|
|
Abstract Wavelength 1064 nm is one of the most widely used laser wavelengths in industries and science. The high-precision measurement of the refractive index of optical materials at 1064 nm is significant for improving the optical design. We study the direct measurement of refractive index at 1064 nm of lasers, including calcium fluoride (CaF2), fused silica and zinc selenide (ZnSe), whose refractive indices cover a large range from 1.42847 to 2.48272. The measurement system is built based on the quasi-common-path Nd:YAG laser feedback interferometry. The thickness can be measured simultaneously with the refractive index. The results demonstrate that the system has absolute uncertainties of ~10?5 and ~10?4 mm in refractive index and thickness measurement, respectively.
|
|
Received: 28 April 2015
Published: 02 October 2015
|
|
|
|
|
|
[1] Ghany K A and Newishy M 2005 J. Mater. Process. Technol. 168 438 [2] Huang Z Q, Hong M H, Do T B M and Lin Q Y 2008 Appl. Phys. A 93 159 [3] Tiginyanu I M, Kravetsky I V, Monecke J, Cordts W, Marowsky G and Hartnagel H L 2000 Appl. Phys. Lett. 77 2415 [4] Moskalik K, Kozlov A, Demin E and Boiko E 2009 Photomed. Laser Surg. 27 345 [5] Ledon J A, Savas J, Franca K, Chacon A and Nouri K 2014 Lasers Med. Sci. 29 823 [6] Tan Y D, Zhang S L, Xu C X and Zhao S J 2013 Appl. Phys. Lett. 103 101909 [7] Goldberg L, Nettleton J, Schilling B, Trussel W and Hays A 2007 Proc. SPIE, Laser Source Technology for Defense and Security III (Orlando, Florida, USA, 9–10 April 2007) 6552 p 65520G [8] Lee J and Jacobs S D 1987 Appl. Opt. 26 777 [9] Zysset B, Biaggio I and Gunter P 1992 J. Opt. Soc. Am. B 9 380 [10] Nikolov I D and Ivanov C D 2000 Appl. Opt. 39 2067 [11] Shenoy M R and DeLaRue R M 1992 IEE Proc. J: Optoelectron. 139 163 [12] Ince R and Seyinoglu E H U 2007 Appl. Opt. 46 3498 [13] Kim S, Na J, Kim M J and Lee B H 2008 Opt. Express 16 5516 [14] Choi H J, Lim H H, Moon H S, Eom T B, Ju J J and Cha M 2010 Opt. Express 18 9429 [15] Kim S H, Lee S H, Lim J I and Kim K H 2010 Appl. Opt. 49 910 [16] Fathi M T and Donati S 2010 Opt. Lett. 35 1844 [17] Ghim Y S and Kim S W 2006 Opt. Express 14 11885 [18] Gong Y, Guo Y, Rao Y J, Zhao T, Wu Y and Ran Z L 2011 Acta Phys. Sin. 60 064202 (in Chinese) [19] Wan X J, Li D and Zhang S L 2007 Opt. Lett. 32 367 [20] Ren Z, Tan Y D, Wan X J, Li D and Zhang S L 2008 Chin. Phys. Lett. 25 3995 [21] Otsuka K 2014 Opt. Lett. 39 1069 [22] Otsuka K, Abe K, Ko J Y and Lim T S 2002 Opt. Lett. 27 1339 [23] Xu C X, Zhang S L, Tan Y D and Zhao S J 2013 Opt. Express 21 11819 [24] Matsuyama T, Shibazaki Y, Ohmura Y and Suzuki T 2002 Proc. SPIE, Optical Microlithography XV Conference (Santa Clara, CA, 5–8 March 2002) 4691 p 687 [25] Oke J B, Cohen J G, Carr M, Cromer J, Dingizian A, Harris F H, Labrecque S, Lucinio R, Schaal W, Epps H and Miller J 1995 Publ. Astron. Soc. Pac. 107 375 [26] Lacot E and Hugon O 2004 Phys. Rev. A 70 53824 [27] Birch K P and Downs M J 1993 Metrologia 30 155 [28] Birch K P and Downs M J 1994 Metrologia 31 315 [29] Corning Incorporated, http://www.corning.com/assets/0/965/989/1081/4A3CF573-9901-4848-9E8F-C3BA500EA7B5.pdf [30] Wolfe W L and Zissis G J 1978 The Infrared Handbook (Arlington: Office of Naval Research, Department of the Navy) [31] Glass A J and Guenther A H 1977 Laser-Induced Damage of Optical Materials (Boulder: NBS Special Publication) |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|