Chin. Phys. Lett.  2013, Vol. 30 Issue (7): 070302    DOI: 10.1088/0256-307X/30/7/070302
GENERAL |
Deterministic Three-Copy Entanglement Concentration of Photons through Direct Sum Extension and Auxiliary Degrees of Freedom
ZHAO Jie, LI Wen-Dong, GU Yong-Jian**
Department of Physics, Ocean University of China, Qingdao 266100
Cite this article:   
ZHAO Jie, LI Wen-Dong, GU Yong-Jian 2013 Chin. Phys. Lett. 30 070302
Download: PDF(527KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The schematic optical realization of deterministic multicopy (three-copy) entanglement concentration under local operations and classical communication (LOCC) is presented, which can resort to the linear optical elements, controlled-NOT gate that uses weak cross-Kerr nonlinearity effect and entangled qudits with different degrees of freedom. This concentration is based on Nielsen's theorem, which in principle quantifies the unit success probability. In addition, the required positive operator-valued measurement (POVM) is implemented through direct sum extension, because the least number of ancillary dimensions is demanded. The construction of POVM is systematically formulated, which results in the feasibility to generate the protocol to n-copy (n>3) cases.
Received: 29 March 2013      Published: 21 November 2013
PACS:  03.67.Hk (Quantum communication)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  03.67.Bg (Entanglement production and manipulation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/7/070302       OR      https://cpl.iphy.ac.cn/Y2013/V30/I7/070302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHAO Jie
LI Wen-Dong
GU Yong-Jian
[1] Bennett C H et al 1993 Phys. Rev. Lett. 70 1895
[2] Bennett C H and Divincenzo D P 2000 Nature 404 247
[3] Gisin N et al 2002 Rev. Mod. Phys. 74 145
[4] Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
[5] Bennett C H, BersteinH J, Popescu S and Schumacher B 1996 Phys. Rev. A 53 2046
[6] Bose S, Vedral V and Knight P L 1999 Phys. Rev. A 60 194
Shi B S, Jiang Y K and Guo G C 2000 Phys. Rev. A 62 054301
[7] Yamamoto T, Koashi M, Ozdemir S K and Imoto N 2003 Nature 421 343
Zhao Z, Yang T, Chen Y A, Zhang A N and Pan J W 2003 Phys. Rev. Lett. 90 207901
[8] Sheng Y B, Deng F G and Zhou H Y 2008 Phys. Rev. A 77 062325
Sheng Y B, Deng F G and Zhou H Y 2010 Quantum Inf. Comput. 10 0272
[9] Sheng Y B, Zhou L, Zhao S M and Zheng B Y 2012 Phys. Rev. A 85 012307
Sheng Y B, Zhou L and Zhao S M 2012 Phys. Rev. A 85 042302
[10] Deng F G 2012 Phys. Rev. A 85 022311
[11] Ogden C D, Paternostro Mand Kim M S 2007 Phys. Rev. A 75 042325
Wang C, Zhang Yand Jin G S 2011 Phys. Rev. A 84 032327
[12] Peng Z H, Zhou J, Liu X J, Xiao Y J and Kuang L M 2012 Phys. Rev. A 86 034305
[13] Morikoshi F and Koashi M 2001 Phys. Rev. A 64 022316
[14] Gu Y J, Li W D and Guo G C 2006 Phys. Rev. A 73 022321
[15] Li W D, Zhang W Z, Ma L Z and Gu Y J 2011 Quantum Inf. Comput. 11 0592
[16] Zhao J, Li W D, Shi P and Gu Y J 2012 Phys. Rev. A (submitted)
[17] Chen P X, Bergou J A, Zhu S Y and Guo G C 2007 Phys. Rev. A 76 060303
[18] Greenberger, Horne D M, Shimony M A and Zeilinger Z 1990 Am. J. Phys. 58 1131
Ghne O et al 2005 Phys. Rev. Lett. 95 120405
[19] Schmitt-Manderbach T, Weiter H et al 2007 Phys. Rev. Lett. 98 010504
[20] Wang T J, Li T, Du F F and Deng F G 2011 Chin. Phys. Lett. 28 040305
[21] Vaziri A, Weiths G and Zeilinger A 2002 Phys. Rev. Lett. 89 240401
Oemrawsingh S S R and Ma X et al 2005 Phys. Rev. Lett. 95 240501
[22] Vallone G, Ceccarelli R, Martini F De and Mataloni P 2009 Phys. Rev. A 79 030301
Yabushita A and Kobayashi T 2004 Phys. Rev. A 69 013806
[23] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[24] Nielsen M A 1999 Phys. Rev. Lett. 83 436
[25] Zhang T, Yin Z Q, Han T F and Guo G C 2008 Opt. Commun. 281 4800
[26] Sheng Y B and Deng F G 2010 Phys. Rev. A 81 032307
[27] Nemoto K and Munro W J 2004 Phys. Rev. Lett. 93 250502
[28] Wei H, Yang W L, Deng Z J and Feng M 2008 Phys. Rev. A 78 014304
[29] Takesue H 2008 Phys. Rev. Lett. 101 173901
Related articles from Frontiers Journals
[1] Jian Li, Yang Zhou, and Qin Wang. Demonstration of Einstein–Podolsky–Rosen Steering with Multiple Observers via Sequential Measurements[J]. Chin. Phys. Lett., 2022, 39(11): 070302
[2] Yanxin Han, Zhongqi Sun, Tianqi Dou, Jipeng Wang, Zhenhua Li, Yuqing Huang, Pengyun Li, and Haiqiang Ma. Twin-Field Quantum Key Distribution Protocol Based on Wavelength-Division-Multiplexing Technology[J]. Chin. Phys. Lett., 2022, 39(7): 070302
[3] Jian Li, Jia-Li Zhu, Jiang Gao, Zhi-Guang Pang, and Qin Wang. Semi-Measurement-Device-Independent Quantum State Tomography[J]. Chin. Phys. Lett., 2022, 39(7): 070302
[4] Yanbo Lou, Xiaoyin Xu, Shengshuai Liu, and Jietai Jing. Low-Noise Intensity Amplification of a Bright Entangled Beam[J]. Chin. Phys. Lett., 2021, 38(9): 070302
[5] Keyu Su, Yunfei Wang, Shanchao Zhang, Zhuoping Kong, Yi Zhong, Jianfeng Li, Hui Yan, and Shi-Liang Zhu. Synchronization and Phase Shaping of Single Photons with High-Efficiency Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(9): 070302
[6] Huan-Yu Liu, Tai-Ping Sun, Yu-Chun Wu, and Guo-Ping Guo. Variational Quantum Algorithms for the Steady States of Open Quantum Systems[J]. Chin. Phys. Lett., 2021, 38(8): 070302
[7] Luyu Huang , Yichen Zhang, and Song Yu . Continuous-Variable Measurement-Device-Independent Quantum Key Distribution with One-Time Shot-Noise Unit Calibration[J]. Chin. Phys. Lett., 2021, 38(4): 070302
[8] A-Long Zhou , Dong Wang, Xiao-Gang Fan , Fei Ming , and Liu Ye. Mutual Restriction between Concurrence and Intrinsic Concurrence for Arbitrary Two-Qubit States[J]. Chin. Phys. Lett., 2020, 37(11): 070302
[9] Wei-Min Shang, Jie Zhou, Hui-Xian Meng, Jing-Ling Chen. Quantum Deletion of Copies of Two Non-orthogonal Quantum States via Weak Measurement[J]. Chin. Phys. Lett., 2020, 37(5): 070302
[10] Yu Mao, Qi Liu, Ying Guo, Hang Zhang, Jian Zhou. Four-State Modulation in Middle of a Quantum Channel for Continuous-Variable Quantum Key Distribution Protocol with Noiseless Linear Amplifier[J]. Chin. Phys. Lett., 2019, 36(10): 070302
[11] Sheng-Li Zhang, Song Yang. Methods for Derivation of Density Matrix of Arbitrary Multi-Mode Gaussian States from Its Phase Space Representation[J]. Chin. Phys. Lett., 2019, 36(9): 070302
[12] Guang-Zhao Tang, Shi-Hai Sun, Chun-Yan Li. Experimental Point-to-Multipoint Plug-and-Play Measurement-Device-Independent Quantum Key Distribution Network[J]. Chin. Phys. Lett., 2019, 36(7): 070302
[13] Ya-Hui Gan, Yang Wang, Wan-Su Bao, Ru-Shi He, Chun Zhou, Mu-Sheng Jiang. Finite-Key Analysis for a Practical High-Dimensional Quantum Key Distribution System Based on Time-Phase States[J]. Chin. Phys. Lett., 2019, 36(4): 070302
[14] Min Xiao, Di-Fang Zhang. Practical Quantum Private Query with Classical Participants[J]. Chin. Phys. Lett., 2019, 36(3): 070302
[15] Cai-Lang Xie, Ying Guo, Yi-Jun Wang, Duan Huang, Ling Zhang. Security Simulation of Continuous-Variable Quantum Key Distribution over Air-to-Water Channel Using Monte Carlo Method[J]. Chin. Phys. Lett., 2018, 35(9): 070302
Viewed
Full text


Abstract