GENERAL |
|
|
|
|
Deterministic Three-Copy Entanglement Concentration of Photons through Direct Sum Extension and Auxiliary Degrees of Freedom |
ZHAO Jie, LI Wen-Dong, GU Yong-Jian** |
Department of Physics, Ocean University of China, Qingdao 266100
|
|
Cite this article: |
ZHAO Jie, LI Wen-Dong, GU Yong-Jian 2013 Chin. Phys. Lett. 30 070302 |
|
|
Abstract The schematic optical realization of deterministic multicopy (three-copy) entanglement concentration under local operations and classical communication (LOCC) is presented, which can resort to the linear optical elements, controlled-NOT gate that uses weak cross-Kerr nonlinearity effect and entangled qudits with different degrees of freedom. This concentration is based on Nielsen's theorem, which in principle quantifies the unit success probability. In addition, the required positive operator-valued measurement (POVM) is implemented through direct sum extension, because the least number of ancillary dimensions is demanded. The construction of POVM is systematically formulated, which results in the feasibility to generate the protocol to n-copy (n>3) cases.
|
|
Received: 29 March 2013
Published: 21 November 2013
|
|
PACS: |
03.67.Hk
|
(Quantum communication)
|
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
03.67.Bg
|
(Entanglement production and manipulation)
|
|
|
|
|
[1] Bennett C H et al 1993 Phys. Rev. Lett. 70 1895 [2] Bennett C H and Divincenzo D P 2000 Nature 404 247 [3] Gisin N et al 2002 Rev. Mod. Phys. 74 145 [4] Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317 [5] Bennett C H, BersteinH J, Popescu S and Schumacher B 1996 Phys. Rev. A 53 2046 [6] Bose S, Vedral V and Knight P L 1999 Phys. Rev. A 60 194 Shi B S, Jiang Y K and Guo G C 2000 Phys. Rev. A 62 054301 [7] Yamamoto T, Koashi M, Ozdemir S K and Imoto N 2003 Nature 421 343 Zhao Z, Yang T, Chen Y A, Zhang A N and Pan J W 2003 Phys. Rev. Lett. 90 207901 [8] Sheng Y B, Deng F G and Zhou H Y 2008 Phys. Rev. A 77 062325 Sheng Y B, Deng F G and Zhou H Y 2010 Quantum Inf. Comput. 10 0272 [9] Sheng Y B, Zhou L, Zhao S M and Zheng B Y 2012 Phys. Rev. A 85 012307 Sheng Y B, Zhou L and Zhao S M 2012 Phys. Rev. A 85 042302 [10] Deng F G 2012 Phys. Rev. A 85 022311 [11] Ogden C D, Paternostro Mand Kim M S 2007 Phys. Rev. A 75 042325 Wang C, Zhang Yand Jin G S 2011 Phys. Rev. A 84 032327 [12] Peng Z H, Zhou J, Liu X J, Xiao Y J and Kuang L M 2012 Phys. Rev. A 86 034305 [13] Morikoshi F and Koashi M 2001 Phys. Rev. A 64 022316 [14] Gu Y J, Li W D and Guo G C 2006 Phys. Rev. A 73 022321 [15] Li W D, Zhang W Z, Ma L Z and Gu Y J 2011 Quantum Inf. Comput. 11 0592 [16] Zhao J, Li W D, Shi P and Gu Y J 2012 Phys. Rev. A (submitted) [17] Chen P X, Bergou J A, Zhu S Y and Guo G C 2007 Phys. Rev. A 76 060303 [18] Greenberger, Horne D M, Shimony M A and Zeilinger Z 1990 Am. J. Phys. 58 1131 Ghne O et al 2005 Phys. Rev. Lett. 95 120405 [19] Schmitt-Manderbach T, Weiter H et al 2007 Phys. Rev. Lett. 98 010504 [20] Wang T J, Li T, Du F F and Deng F G 2011 Chin. Phys. Lett. 28 040305 [21] Vaziri A, Weiths G and Zeilinger A 2002 Phys. Rev. Lett. 89 240401 Oemrawsingh S S R and Ma X et al 2005 Phys. Rev. Lett. 95 240501 [22] Vallone G, Ceccarelli R, Martini F De and Mataloni P 2009 Phys. Rev. A 79 030301 Yabushita A and Kobayashi T 2004 Phys. Rev. A 69 013806 [23] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) [24] Nielsen M A 1999 Phys. Rev. Lett. 83 436 [25] Zhang T, Yin Z Q, Han T F and Guo G C 2008 Opt. Commun. 281 4800 [26] Sheng Y B and Deng F G 2010 Phys. Rev. A 81 032307 [27] Nemoto K and Munro W J 2004 Phys. Rev. Lett. 93 250502 [28] Wei H, Yang W L, Deng Z J and Feng M 2008 Phys. Rev. A 78 014304 [29] Takesue H 2008 Phys. Rev. Lett. 101 173901 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|