Chin. Phys. Lett.  2013, Vol. 30 Issue (7): 070301    DOI: 10.1088/0256-307X/30/7/070301
GENERAL |
Infrared Spectra of PH3 and NF3: An Algebraic Approach
Joydeep Choudhury1,*, Nirmal Kumar Sarkar2, Ramendu Bhattacharjee1
1Department of Physics, Assam University, Silchar-788011, India
2Department of Physics, Karimganj College, Karimganj-788710, India
Cite this article:   
Joydeep Choudhury, Nirmal Kumar Sarkar, Ramendu Bhattacharjee 2013 Chin. Phys. Lett. 30 070301
Download: PDF(391KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Molecular spectroscopy is a branch of physics which deals with the interaction of electromagnetic radiation with matter. Using the new theoretical approach, i.e., Lie algebraic approach, we calculate the infrared spectra of phosphine in the range from 3000 cm?1 to 9500 cm?1 and nitrogen trifluoride in the range from 900 cm?1 to 4500 cm?1. The model Hamiltonian constructed seems to describe the P–H and N–F stretching modes accurately with only four numbers of parameters. The present calculation not only predicts the higher overtones but also shows good agreement with the few observed data.
Received: 09 October 2012      Published: 21 November 2013
PACS:  03.65.Fd (Algebraic methods)  
  02.20.-a (Group theory)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/7/070301       OR      https://cpl.iphy.ac.cn/Y2013/V30/I7/070301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Joydeep Choudhury
Nirmal Kumar Sarkar
Ramendu Bhattacharjee
[1] Dunham J L 1932 Phys. Rev. 41 721
[2] Herzberg G 1950 Spectra of Diatomic Molecule (Toronto: Van Nostrand)
[3] Iachello F 1981 Chem. Phys. Lett. 78 581
[4] Iachello F and Levine R D 1982 J. Chem. Phys. 77 3046
[5] Iachello F et al 1991 J. Mol. Spectrosc. 146 56
[6] Iachello F and Oss S, Lemus R 1991 J. Mol. Spectrosc. 149 132
[7] Lemus R and Frank A 1994 J. Chem. Phys. 101 8321
[8] Iachello F and Oss S 1992 J. Mol. Spectrosc. 153 225
[9] Iachello F and Oss S 1991 Phys. Rev. Lett. 66 2976
[10] Iachello F and Oss S 2002 Eur. Phys. J. D 19 307
[11] Iachello F and Levine R D 1995 Algebraic Theory of Molecules (New York: Oxford University Press)
[12] Frank A and van Isacker V P 1994 Algebraic Methods in Molecular and Nuclear Structure Physics (New York: Wiley)
[13] Oss S 1996 Adv. Chem. Phys. 93 455
[14] Sarkar N K et al 2006 Mol. Phys. 104 3051
[15] Sarkar N K et al 2009 Eur. Phys. J. D 53 163
[16] Sarkar N K et al 2011 Vib. Spectrosc. 56 99
[17] Sarkar N K et al 2008 Mol. Phys. 106 693
[18] Choudhury J et al 2009 Pramana 73 881
[19] Choudhury J et al 2008 Pramana 71 439
[20] Karumuri S R et al 2009 Pramana 72 517
[21] Choudhury J et al 2009 Chin. Phys. Lett. 26 020308
[22] Kalyan A et al 2011 Arm. J. Phys. 4 49
[23] Sen R et al 2012 Ukr. J. Phys. 57 500
[24] Kalyan A et al 2011 Afr. Rev. Phys. 6 69
[25] Choudhury J et al 2012 Chin. J. Phys. 50 450
[26] He S G et al 2001 J. Chem. Phys. 114 7018
[27] Wilson M K and Polo S R 1952 J. Chem. Phys. 20 1716
Related articles from Frontiers Journals
[1] Wen-Ya Song, Fu-Lin Zhang. Dynamical Algebras in the 1+1 Dirac Oscillator and the Jaynes–Cummings Model[J]. Chin. Phys. Lett., 2020, 37(5): 070301
[2] Jie Zhou, Hong-Yi Su, Fu-Lin Zhang, Hong-Biao Zhang, Jing-Ling Chen. Solving the Jaynes–Cummings Model with Shift Operators Constructed by Means of the Matrix-Diagonalizing Technique[J]. Chin. Phys. Lett., 2018, 35(1): 070301
[3] Guang Yang, Wei Li, Li-Xiang Cen. Nonadiabatic Population Transfer in a Tangent-Pulse Driven Quantum Model[J]. Chin. Phys. Lett., 2018, 35(1): 070301
[4] Bing-Sheng Lin, Tai-Hua Heng. A Relation of the Noncommutative Parameters in Generalized Noncommutative Phase Space[J]. Chin. Phys. Lett., 2016, 33(11): 070301
[5] LAI Meng-Yun, XIAO Duan-Liang, PAN Xiao-Yin. The Harmonic Potential Theorem for a Quantum System with Time-Dependent Effective Mass[J]. Chin. Phys. Lett., 2015, 32(11): 070301
[6] ALSADI Khalid S. Eigen Spectra of the Dirac Equation for Deformed Woods–Saxon Potential via the Similarity Transformation[J]. Chin. Phys. Lett., 2014, 31(12): 070301
[7] HUANG Jie-Hui, HU Li-Yun, WANG Lei, ZHU Shi-Yao. Separability Criterion for Bipartite States and Its Generalization to Multipartite Systems[J]. Chin. Phys. Lett., 2014, 31(04): 070301
[8] Sameer M. Ikhdair, Babatunde J. Falaye, Majid Hamzavi. Approximate Eigensolutions of the Deformed Woods–Saxon Potential via AIM[J]. Chin. Phys. Lett., 2013, 30(2): 070301
[9] Akpan N. Ikot, Ita O. Akpan. Bound State Solutions of the Schr?dinger Equation for a More General Woods–Saxon Potential with Arbitrary l-State[J]. Chin. Phys. Lett., 2012, 29(9): 070301
[10] M. Hamzavi, M. Movahedi, K.-E. Thylwe, and A. A. Rajabi. Approximate Analytical Solution of the Yukawa Potential with Arbitrary Angular Momenta[J]. Chin. Phys. Lett., 2012, 29(8): 070301
[11] KANG Jing, QU Chang-Zheng. Symmetry Groups and Gauss Kernels of the Schrödinger Equations with Potential Functions[J]. Chin. Phys. Lett., 2012, 29(7): 070301
[12] LIAN Jin-Ling, ZHANG Yuan-Wei, LIANG Jiu-Qing. Macroscopic Quantum States and Quantum Phase Transition in the Dicke Model[J]. Chin. Phys. Lett., 2012, 29(6): 070301
[13] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 070301
[14] LIN Bing-Sheng**, HENG Tai-Hua . Energy Spectra of the Harmonic Oscillator in a Generalized Noncommutative Phase Space of Arbitrary Dimension[J]. Chin. Phys. Lett., 2011, 28(7): 070301
[15] ZHANG Min-Cang**, HUANG-FU Guo-Qing . Analytical Approximation to the -Wave Solutions of the Hulthén Potential in Tridiagonal Representation[J]. Chin. Phys. Lett., 2011, 28(5): 070301
Viewed
Full text


Abstract