Chin. Phys. Lett.  2011, Vol. 28 Issue (11): 110505    DOI: 10.1088/0256-307X/28/11/110505
GENERAL |
Vibrational and Stochastic Resonance in the FitzHugh–Nagumo Neural Model with Multiplicative and Additive Noise
HE Zheng-You, ZHOU Yu-Rong**
School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031
Cite this article:   
HE Zheng-You, ZHOU Yu-Rong 2011 Chin. Phys. Lett. 28 110505
Download: PDF(484KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The vibrational resonance and stochastic resonance phenomena in the FitzHugh–Nagumo (FHN) neural model, driven by a high-frequency (HF) signal and a low-frequency (LF) signal and by coupled multiplicative and additive noises, is investigated. For the case that the frequency of the HF signal is much higher than that of the LF signal, under the adiabatic approximation condition, the expression of the signal-to-noise ratio (SNR) with respect to the LF signal is obtained. It is shown that the SNR is a non-monotonous function of the amplitude and frequency of the HF signal. In addition, the SNR varies non-monotonically with the increasing intensities of the multiplicative and additive noise as well as with the increasing system parameters of the FHN model. The influence of the coupling strength between the multiplicative and additive noises on the SNR is discussed.
Keywords: 05.40.-a      02.50.-r     
Received: 22 April 2011      Published: 30 October 2011
PACS:  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  02.50.-r (Probability theory, stochastic processes, and statistics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/11/110505       OR      https://cpl.iphy.ac.cn/Y2011/V28/I11/110505
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HE Zheng-You
ZHOU Yu-Rong
[1] Benzi R, Sutera A and Vulpiani A 1981 J. Phys. A: Math Gen. 14 L453
[2] Gammaitoni L, Hänggi P, Jung P and Marchesoni F 1998 Rev. Mod. Phys. 70 223
[3] Guo F, Zhou Y R and Zhang Y 2010 Chin. Phys. Lett. 27 090506
[4] Zhou Y R 2010 Chin. Phys. Lett. 27 080502
[5] Landa P S and McClintock P V E 2000 J. Phys A: Math. Gen. 33 L433
[6] Maksimov A 1997 Ultrasonics 35 79
[7] Jin Y F, Xu W and Xu M 2005 Chin. Phys. Lett. 22 1061
[8] Baltanas J P, Lopez L, Blechman I I, Landa P S, Zaikin A, Kurths J and Sanjuan M A F 2003 Phys. Rev. E 67 066119
[9] Jeyakumari S, Chinnathambi V, Rajasekar S and Sanjuan M A F 2009 Phys. Rev. E 80 046608
[10] Chizhevsky V N and Giacomelli G 2005 Phys. Rev. A 71 011801(R)
[11] Hodgkin A L and Huxley A F 1952 J. Physiol. 117 500
[12] Bonhoefer K F 1948 J. Gen. Physiol. 32 69
[13] Treutlein H, Schulten K and Bunsenges B 1985 Phys. Chem. 89 710
[14] Shinohara Y, Kanamaru T, Suzuki H, Horita T and Aihara K 2002 Phys. Rev. E 65 051906
[15] Pankratov E V, Polovinkin A V and Spagnolo B 2005 Phys. Lett. A 344 43
[16] Tessonea C J and Wio H S 2007 Physica A 374 46
[17] Cubero D, Baltanás J P and CasadoPascual J 2006 Phys. Rev. E 73 061102
[18] Fulinski A and Telejko T 1991 Phys. Lett. A 152 11
[19] Zeng C H, Zeng C P, Gong A L and Nie L R 2010 Physica A 389 5117
[20] Lindner B and SchimanskyGeier L 1999 Phys. Rev. E 60 7270
[21] McNamara B and Wiesenfeld K 1989 Phys. Rev . A 39 4854
[22] Bouzat S and Wio H S 1999 Phys. Rev. E 59 5142
[23] Wio H S and Bouzat S 1999 Braz. J. Phys. 29 136
[24] Hanggi P, Marchesoni F and Grigolini P 1984 Z. Phys. B 56 333
[25] Fox R F 1986 Phys. Rev. A 33 467
Related articles from Frontiers Journals
[1] BAI Zhan-Wu. Role of the Bath Spectrum in the Specific Heat Anomalies of a Damped Oscillator[J]. Chin. Phys. Lett., 2012, 29(6): 110505
[2] SHU Chang-Zheng,NIE Lin-Ru**,ZHOU Zhong-Rao. Stochastic Resonance-Like and Resonance Suppression-Like Phenomena in a Bistable System with Time Delay and Additive Noise[J]. Chin. Phys. Lett., 2012, 29(5): 110505
[3] DUAN Wen-Qi. Formation Mechanism of the Accumulative Magnification Effect in a Financial Time Series[J]. Chin. Phys. Lett., 2012, 29(3): 110505
[4] TIAN Liang, LIN Min. Relaxation of Evolutionary Dynamics on the Bethe Lattice[J]. Chin. Phys. Lett., 2012, 29(3): 110505
[5] REN Xue-Zao, YANG Zi-Mo, WANG Bing-Hong, ZHOU Tao. Mandelbrot Law of Evolving Networks[J]. Chin. Phys. Lett., 2012, 29(3): 110505
[6] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 110505
[7] GU Shi-Jian**, WANG Li-Gang, WANG Zhi-Guo, LIN Hai-Qing. Repeater-Assisted Zeno Effect in Classical Stochastic Processes[J]. Chin. Phys. Lett., 2012, 29(1): 110505
[8] HUANG Jia-Min, TAO Wei-Ming**, XU Bo-Hou. Evaluation of an Asymmetric Bistable System for Signal Detection under Lévy Stable Noise[J]. Chin. Phys. Lett., 2012, 29(1): 110505
[9] ZHANG Lu, ZHONG Su-Chuan, PENG Hao, LUO Mao-Kang** . Stochastic Multi-Resonance in a Linear System Driven by Multiplicative Polynomial Dichotomous Noise[J]. Chin. Phys. Lett., 2011, 28(9): 110505
[10] LI Chun, MEI Dong-Cheng, ** . Effects of Time Delay on Stability of an Unstable State in a Bistable System with Correlated Noises[J]. Chin. Phys. Lett., 2011, 28(4): 110505
[11] YANG Yang, WANG Cang-Long, DUAN Wen-Shan**, CHEN Jian-Min . Resonance and Rectification in a Two-Dimensional Frenkel–Kontorova Model with Triangular Symmetry[J]. Chin. Phys. Lett., 2011, 28(3): 110505
[12] WANG Shao-Hua, YANG Ming**, WU Da-Jin . Diffusion of Active Particles Subject both to Additive and Multiplicative Noises[J]. Chin. Phys. Lett., 2011, 28(2): 110505
[13] TANG Jun**, QU Li-Cheng, LUO Jin-Ming . Robustness of Diversity Induced Synchronization Transition in a Delayed Small-World Neuronal Network[J]. Chin. Phys. Lett., 2011, 28(10): 110505
[14] ZHANG Yan-Ping, HE Ji-Zhou**, XIAO Yu-Ling . An Approach to Enhance the Efficiency of a Brownian Heat Engine[J]. Chin. Phys. Lett., 2011, 28(10): 110505
[15] ZHANG Yan-Ping, HE Ji-Zhou. Thermodynamic Performance Characteristics of an Irreversible Micro-Brownian Heat Engine Driven by Temperature Difference[J]. Chin. Phys. Lett., 2010, 27(9): 110505
Viewed
Full text


Abstract