Chin. Phys. Lett.  2011, Vol. 28 Issue (11): 110506    DOI: 10.1088/0256-307X/28/11/110506
GENERAL |
Chaos Suppression in a Sine Square Map through Nonlinear Coupling
Eduardo L. Brugnago**, Paulo C. Rech
Departamento de Física, Universidade do Estado de Santa Catarina, 89223-100 Joinville, Brazil
Cite this article:   
Eduardo L. Brugnago, Paulo C. Rech 2011 Chin. Phys. Lett. 28 110506
Download: PDF(1867KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study a pair of nonlinearly coupled identical chaotic sine square maps. More specifically, we investigate the chaos suppression associated with the variation of two parameters. Two-dimensional parameter-space regions where the chaotic dynamics of the individual chaotic sine square map is driven towards regular dynamics are delimited. Additionally, the dynamics of the coupled system is numerically characterized as the parameters are changed.
Keywords: 05.45.-a      05.45.Pq      05.45.Ac     
Received: 23 March 2011      Published: 30 October 2011
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
  05.45.Ac (Low-dimensional chaos)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/11/110506       OR      https://cpl.iphy.ac.cn/Y2011/V28/I11/110506
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Eduardo L. Brugnago
Paulo C. Rech
[1]     Iglesias A, Gutiérrez J M, Güémez J and Matí as M A 1996 Chaos Solitons Fractals 7 1305

[2]     Hénon M 1976 Commun. Math. Phys. 50 69

[3]     Whitehead R R and MacDonald N 1984 Physica D 13 401

[4]     Osipov V, Glatz L and Troger H 1998 Chaos Solitons Fractals 9 307

[5]     Guckenheimer J and Holmes P 2002 Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (New York: Springer) p 173

[6]     Patidar V, Pareek N K and Sud K K 2002 Phys. Lett. A 304 121

[7]     Choe C U, Höhne K, Benner H and Kivshar Y S 2005 Phys. Rev. E 72 036206

[8]     Zheng Y H, Lu Q S and Wang Q Y 2006 Chin. Phys. Lett. 23 3176

[9]     Rajesh S, Sinha S and Sinha S 2007 Phys. Rev. E 75 011906

[10]     Bragard J, Vidal G, Mancini H, Mendoza C and Boccaletti S 2007 Chaos 17 043107

[11]     Rech P C 2008 Phys. Lett. A 372 4434

[12]     Casas G A and Rech P C 2010 Int. J. Bifurcation Chaos Appl. Sci. Eng. 20 153

[13]     Xu J, Long K -P, Fournier-Prunaret D, Taha A -K and Charge P 2010 Chin. Phys. Lett. 27 020504

[14]     Xu J, Long K -P, Fournier-Prunaret D, Taha A -K and Charge P 2010 Chin. Phys. Lett. 27 080506

[15]     Wiggins S 2003 Introduction to Applied Nonlinear Dynamical Systems and Chaos (New York: Springer) p 517

[16]     Schuster H G 2005 Deterministic chaos: An introduction (Weinheim: VCH) p 137

[17]     Casas G A and Rech P C 2011 Chin. Phys. Lett. 28 010203
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 110506
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 110506
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 110506
[4] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 110506
[5] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 110506
[6] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 110506
[7] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 110506
[8] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 110506
[9] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 110506
[10] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 110506
[11] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 110506
[12] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 110506
[13] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 110506
[14] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 110506
[15] LI Xian-Feng**, Andrew Y. -T. Leung, CHU Yan-Dong. Symmetry and Period-Adding Windows in a Modified Optical Injection Semiconductor Laser Model[J]. Chin. Phys. Lett., 2012, 29(1): 110506
Viewed
Full text


Abstract