Chin. Phys. Lett.  2011, Vol. 28 Issue (11): 110507    DOI: 10.1088/0256-307X/28/11/110507
GENERAL |
Adaptive Increasing-Order Synchronization and Anti-Synchronization of Chaotic Systems with Uncertain Parameters
M. Mossa Al-sawalha1, M. S. M. Noorani2
1Faculty of Science, Mathematics Department, University of Hail, Kingdom of Saudi Arabia
2Center for Modelling & Data Analysis,School of Mathematical Sciences, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
Cite this article:   
M. Mossa Al-sawalha, M. S. M. Noorani 2011 Chin. Phys. Lett. 28 110507
Download: PDF(428KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We elaborate the concept of increasing-order synchronization and anti-synchronization of chaotic systems via an adaptive control scheme and modulation parameters. It is shown that the dynamical evolution of a third-order chaotic system can be synchronized and anti-synchronized with a fourth-order chaotic system even though their parameters are unknown. Theoretical analysis and numerical simulations are carried out to verify the results.
Keywords: 05.45.-a      47.52.+j      89.75.-k     
Received: 18 February 2011      Published: 30 October 2011
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  47.52.+j (Chaos in fluid dynamics)  
  89.75.-k (Complex systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/11/110507       OR      https://cpl.iphy.ac.cn/Y2011/V28/I11/110507
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
M. Mossa Al-sawalha
M. S. M. Noorani
[1] Rafikov M and Balthazar J 2008 Commun. Nonlin. Sci. Numer. Simulat. 13 1246
[2] Al-Sawalha M M and Noorani M S M 2009 Chaos, Solitons Fractals 42 179
[3] Al-Sawalha M M and Noorani M S M 2010 Commun. Nonlin. Sci. Numer. Simulat. 15 1047
[4] Al-Sawalha M M and Noorani M S M 2008 Open Systems Information Dynamics 4 371
[5] Pecora L M and Carroll T L 1990 Phys. Rev. Lett. 64 824
[6] Chen A, Lü J and Yu S 2006 Physica A 364 103
[7] Lü J, Chen G and Zhang S 2002 Int. J. Bifurcat. Chaos 12 1001
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 110507
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 110507
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 110507
[4] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 110507
[5] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 110507
[6] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 110507
[7] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 110507
[8] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 110507
[9] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 110507
[10] LIU Xu,XIE Zheng,YI Dong-Yun**. Community Detection by Neighborhood Similarity[J]. Chin. Phys. Lett., 2012, 29(4): 110507
[11] DUAN Wen-Qi. Formation Mechanism of the Accumulative Magnification Effect in a Financial Time Series[J]. Chin. Phys. Lett., 2012, 29(3): 110507
[12] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 110507
[13] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 110507
[14] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 110507
[15] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 110507
Viewed
Full text


Abstract