|
Temporal Parameter Optimization in Four-Dimensional Flash Trajectory Imaging
WANG Xin-Wei**, ZHOU Yan, FAN Song-Tao, LIU Yu-Liang
Chin. Phys. Lett. 2011, 28 (11):
110601
.
DOI: 10.1088/0256-307X/28/11/110601
In four-dimensional flash trajectory imaging, temporal parameters include time delay, laser pulse width, gate time, pulse pair repetition frequency and the frame rate of CCD, which directly impact on the acquisition of target trajectories over time. We propose a method of optimizing the temporal parameters of flash trajectory imaging. All the temporal parameters can be estimated by the spatial parameters of the volumes of interest, target scale and velocity, and target sample number. The formulae for optimizing temporal parameters are derived, and the method is demonstrated in an experiment with a ball oscillating as a pendulum.
|
|
A Simple Singlet Fermionic Dark-Matter Model Revisited
QIN Hong-Yi**, WANG Wen-Yu, XIONG Zhao-Hua
Chin. Phys. Lett. 2011, 28 (11):
111202
.
DOI: 10.1088/0256-307X/28/11/111202
We evaluate the spin-independent elastic dark matter-nucleon scattering cross section in the framework of the simple singlet fermionic dark matter extension of the standard model and constrain the model parameter space with the following considerations: (i) new dark matter measurement, in which, apart from WMAP and CDMS, the results from the XENON experiment are also used in constraining the model; (ii) new fitted value of the quark fractions in nucleons, in which the updated value of fTs from the recent lattice simulation is much smaller than the previous one and may reduce the scattering rate significantly; (iii) new dark matter annihilation channels, in which the scenario where top quark and Higgs pairs produced by dark matter annihilation was not included in the previous works. We find that unlike in the minimal supersymmetric standard model, the cross section is just reduced by a factor of about 1/4 and dark matter lighter than 100 GeV is not favored by the WMAP, CDMS and XENON experiments.
|
|
Single Production of a Heavy T-Quark in the Left-Right Twin Higgs Model at LHeC
SHEN Jie-Fen**, CUI Xiao-Min, LI Yu-Qi, GAO Yin-Hao
Chin. Phys. Lett. 2011, 28 (11):
111203
.
DOI: 10.1088/0256-307X/28/11/111203
In the context of the left-right twin Higgs model, we study single production of a T−quark at the Large Hadron electron Collider based ep and γp colliders, which proceed via the processes e+b→νeT and γb→W−T. For the main decay mode T→φ+b→tbb, these two processes mainly transfer to the final states of 3b+ l (e or μ) + missing ET and 3b + 2l + missing ET, respectively. With the electron energy Ee=500 GeV and photon energy Ep=7 TeV, we find that the production rates can reach tens fb when the heavy T−quark mass mT<600 GeV. A simple phenomenological analysis is also given for the decay mode T→W+b. Our numerical results show that the SM background can be reduced by applying a cut on the transverse momentum of the final b−quark and the invariant mass of Wb. However, such a channel is only useful for a tiny parameter space.
|
|
Shape Evolution in Rotating 178Os
HAO Xin**, ZHU Li-Hua, WU Xiao-Guang, HE Chuang-Ye, ZHENG Yun, LI Li-Hua, SUN Hui-Bin, LI Guang-Sheng
Chin. Phys. Lett. 2011, 28 (11):
112101
.
DOI: 10.1088/0256-307X/28/11/112101
In order to investigate the evolution of X(5) in rotating 178Os, an experiment populating 178Os via the fusion evaporation reaction 154Sm(29Si,5n)178Os was performed at the HI−13 tandem accelerator at the China Institute of Atomic Energy (CIAE). Lifetimes of excited states above 8+ in the yrast band in 178Os have been measured using the Doppler shift attenuation method. Lifetimes above 12+ states were measured for the first time. The deduced transitional quadruple moments (Qt), together with the previous data using the recoil distance Doppler shift (RDDS) method are compared with theoretical calculations based on the X(5) model and the interaction Boson model (IBM). Above the 10+ states, the Qt values fit well with the X(5) predictions. The present result suggests that the shape of a nucleus 178Os keeps X(5) critical point symmetry as spin increases to at least 14+. The shape change of 178Os with spin increasing is similar to that of 176Os.
|
|
Symmetry Energy Effects in a Statistical Multifragmentation Model
ZHANG Lei**, GAO Yuan, , ZHANG Hong-Fei, CHEN Xi-Meng, Yu Mei-Ling, LI Jun-Qing
Chin. Phys. Lett. 2011, 28 (11):
112102
.
DOI: 10.1088/0256-307X/28/11/112102
The symmetry energy effects on the nuclear disintegration mechanisms of the neutron-rich system (A0=200, Z0=78) are studied in the framework of the statistical multifragmentation model (SMM) within its micro-canonical ensemble. A modified symmetry energy term with consideration of the volume and surface asymmetry is adopted instead of the original invariable value in the standard SMM model. The results indicate that as the volume and surface asymmetries are considered, the neutron-rich system translates to a fission-like process from evaporation earlier than the original standard SMM model at lower excitation energies, and its mass distribution has larger probabilities in the medium-heavy nuclei range so that the system breaks up more averagely. When the excitation energy becomes higher, the volume and surface asymmetry lead to a smaller average multiplicity.
|
|
Inclusive Proton Energy Spectra of the Deuteron Induced Reaction
WANG Jia, YE Tao, SUN Wei-Li**, Yukinobu Watanabe, Kazuyuki Ogata
Chin. Phys. Lett. 2011, 28 (11):
112401
.
DOI: 10.1088/0256-307X/28/11/112401
The continuum-discritized coupled channel method and the glauber model are applied for the description of deuteron elastic breakup and the stripping processes, respectively. Combined with the conventional two-component exciton model for pre-equilibrium processes and the Hauser-Feshbach theory for compound process, an approach based on models is proposed to analyze the inclusive proton energy spectra of a deuteron-induced reaction. The contributions from each process to the energy spectra of the 58Ni(d,xp) reaction are quantitatively given. The results show that this approach is able to reasonably reproduce the experimental data of the double differential cross sections, energy spectra and cross sections, although further improvements are needed.
|
|
Density Functional Theory and Grand Canonical Monte Carlo Simulations of the Hydrogen Storage Properties of Partially Truncated and Open Cage C60 Fullerenes
LI Xiao-Dong, TANG Yong-Jian, CHENG Xin-Lu, ZHANG Hong**
Chin. Phys. Lett. 2011, 28 (11):
113102
.
DOI: 31.15.E-, 81.05.Ug, 02.70.Lq
The potential energies of H2 molecules with partially truncated and open cage C60 fullerenes, including C58, C55, C54(I), C54(II) and C46, are investigated by means of the density functional theory method. The energy barrier for one H2 molecule (with two postures) entering into the nanocage decreases from 435.59 (513.45) kcal/mol to 3.64 (−2.06) kcal/mol with the increase of the truncated pore. The grand canonical Monte Carlo simulations reveal that each nanocage can accommodate only one H2 molecule inside its cavity at both 77 K and 298 K. All the other H2 molecules are adsorbed round the truncated pores outside the nanocages. Exceptionally, the truncated C46 can store 2.28wt% H2 molecules at 77 K. Therefore, the truncating part of the C60 molecule may be a novel idea to explore C60 fullerene as a hydrogen storage material.
|
|
An InP-Based Dual-Depletion-Region Electroabsorption Modulator with Low Capacitance and Predicted High Bandwidth
SHAO Yong-Bo**, ZHAO Ling-Juan, YU Hong-Yan, QIU Ji-Fang, QIU Ying-Ping, PAN Jiao-Qing, WANG Bao-Jun, ZHU Hong-Liang, WANG Wei
Chin. Phys. Lett. 2011, 28 (11):
114207
.
DOI: 10.1088/0256-307X/28/11/114207
A novel dual-depletion-region electroabsorption modulator (DDR-EAM) based on InP at 1550 nm is fabricated. The measured capacitance and extinction ratio of the DDR-EAM reveal that the dual depletion region structure can reduce the device capacitance significantly without any degradation of extinction ratio. Moreover, the bandwidth of the DDR-EAM predicted by using an equivalent circuit model is larger than twice the bandwidth of the conventional lumped-electrode EAM (L-EAM).
|
|
Single and Multicasting Inverted-Wavelength Conversion at 80 Gb/s Based on a Single Semiconductor Optical Amplifier
HUANG Xi, QIN Cui, YU Yu, ZHANG Xin-Liang**
Chin. Phys. Lett. 2011, 28 (11):
114211
.
DOI: 10.1088/0256-307X/28/11/114211
We experimentally demonstrate single and multicasting inverted wavelength conversion at 80 Gb/s by using the cross-gain modulation and cross-phase modulation in a single semiconductor optical amplifier (SOA). In all the cases, converted signals with a high extinction ratio (ER) and large eye opening are obtained. For single-channel wavelength conversion, the ER of the output signal is as high as 30.10 dB. For three-channel wavelength multicasting, high quality converted signals could also be observed. The ERs with three channels are 21.54 dB, 18.58 dB and 17.72 dB, respectively. Thus, one- and three-channel wavelength conversion with high performance can be achieved by using a single quantum-well SOA.
|
|
Multicolor InAs/InP(100) Quantum Dot Laser
LI Shi-Guo**, GONG Qian, CAO Chun-Fang, WANG Xin-Zhong, WANG Rui-Chun, YUE Li, LIU Qing-Bo, WANG Hai-Long
Chin. Phys. Lett. 2011, 28 (11):
114212
.
DOI: 10.1088/0256-307X/28/11/114212
We report on a three-colour InAs/InP(100) quantum dot laser under continuous wave mode at an operation temperature of 20 °C. Three lasing peaks are observed simultaneously, the high-energy peak undergoes continuous blueshift, while the splitting energy gap between the low-energy peaks is somewhat fixed as the injection current increases. The maximum output power from one facet without coating is more than 34 mW with a slope efficiency of 102 mW/A just above the threshold current. Three peaks of differential efficiency of output power are observed, just corresponding to each peak in lasing spectra, respectively. At the same time, the far-field distribution shows only a single transverse mode over the full range of injection current.
|
|
Observation of Hot Electrons in Surface-Wave Plasmas Excited by Surface Plasmon Polaritons
HU Ye-Lin, CHEN Zhao-Quan, **, LIU Ming-Hai**, HONG Ling-Li, LI Ping, ZHENG Xiao-Liang, XIA Guang-Qing**, HU Xi-Wei
Chin. Phys. Lett. 2011, 28 (11):
115201
.
DOI: 10.1088/0256-307X/28/11/115201
The electron energy distribution functions (EEDFs) are studied in the planar-type surface-wave plasma (SWP) caused by resonant excitation of surface plasmon polaritons (SPPs) using a single cylindrical probe. Sustained plasma characteristics can be considered as a bi-Maxwellian EEDF, which correspond to a superposition of the bulk low-temperature electron and the high-energy electron beam-like part. The beam component energy is pronounced at about 10 eV but the bulk part is lower than 3.5 eV. The hot electrons included in the proposed plasmas play a significant role in plasma heating and further affect the discharge chemistry.
|
|
Simulation and Suppression of the Gas Phase Pre-reaction in Metal-Organic Chemical Vapor Deposition of ZnO
ZHU Guang-Yao, GU Shu-Lin**, ZHU Shun-Ming, TANG Kun, YE Jian-Dong, ZHANG Rong, SHI Yi, ZHENG You-Dou
Chin. Phys. Lett. 2011, 28 (11):
116803
.
DOI: 10.1088/0256-307X/28/11/116803
The reaction mechanism and simulations of the metal-organic chemical vapor deposition reactor for ZnO film growth are presented, indicating the temperature of the reaction species. The gas phase pre-reaction can be modulated by several factors or conditions. Simulations verify the relationships between temperature and pyrolysis of precursors, and further reveal that the substrate temperature and flow rate of cooling water have great impacts on the temperature distribution. The experimental results agree with the simulations.
|
|
Geometric and Electronic Structures at the Interface between Iron Phthalocyanine and Si (110)
JIN Dan, Ateeq ur Rehman, QIAN Hui-Qin, JIANG Li-Zhen, ZHANG Han-Jie, LI Hai-Yang, HE Pi-Mo, BAO Shi-Ning
Chin. Phys. Lett. 2011, 28 (11):
116804
.
DOI: 10.1088/0256-307X/28/11/116804
The geometric and electronic structures at the interface between iron phthalocyanine (FePc) and Si(110) surface are studied by ultraviolet photoelectron spectroscopy and density functional theory (DFT) calculation. After FePc is deposited on Si(110), the emission features are located at 2.56, 4.90, 7.90, 10.88 eV below the Fermi level for monolayer and 2.73, 4.90, 7.74, 10.52 eV below the Fermi level for multilayer. At the coverage of 1 ML, FePc molecules are adsorbed on the bridge site in a flat-lying geometry with a 2.17 Å separation between the molecule and the substrate. The molecular plane is bent due to the interaction between the adsorbate and the substrate.
|
|
The Tunable Bandgap of AB-Stacked Bilayer Graphene on SiO2 with H2O Molecule Adsorption
WANG Tao, GUO Qing**, AO Zhi-Min**, LIU Yan, WANG Wen-Bo, SHENG Kuang, YU Bin,
Chin. Phys. Lett. 2011, 28 (11):
117302
.
DOI: 10.1088/0256-307X/28/11/117302
The atomic and electronic structures of AB-stacking bilayer graphene (BLG) in the presence of H2O molecules are investigated by density functional theory calculations. For free−standing BLG, the bandgap is opened to 0.101 eV with a single H2O molecule adsorbed on its surface. The perfectly suspended BLG is sensitive to H2O adsorbates, which break the BLG lattice symmetry and open an energy gap. While a single H2O molecule is adsorbed on the BLG surface with a SiO2 substrate, the bandgap widens to 0.363 eV. Both the H2O molecule adsorption and the oxide substrate contribute to the BLG bandgap opening. The phenomenon is interpreted with the charge transfer process in 2D carbon nanostructures.
|
|
Ultrafast Dynamics of Polythiophene with Phenyl Vinylene Branches Studied by Femtosecond Fluorescence Spectroscopy in Solution
CHU Sai-Sai, GAO Chao, WANG Shu-Feng**, GONG Qi-Huang**
Chin. Phys. Lett. 2011, 28 (11):
117802
.
DOI: 10.1088/0256-307X/28/11/117802
Two polythiophene based polymers, poly[(3-[2-[4-(2-ethyl-hexyloxy)-phenyl]-vinyl]-thiophene)-co-thiophene] (PT1) and poly(3-[2-[4-(2-ethyl-hexyloxy)-phenyl]-vinyl]-thiophene) (PT2), are synthesized and investigated by static, picosecond fluorescence spectroscopies and the femtosecond up-conversion technique in solution. Compared with pristine poly(3-hexylthiophene) (P3HT), PT1 and PT2, in which the main chains are decorated with phenyl vinylene present a 'camel back' structure in the absorption spectra. Phenyl vinylene side chains induce a new process of charge transfer, chain twisting motion and defect-induced fluorescence quenching at time scales of 1 ps, 10 ps and 150 ps, respectively.
|
|
Structural and Optoelectronic Properties of Cubic CsPbF3 for Novel Applications
G. Murtaza, Iftikhar Ahmad, **, M. Maqbool, H. A. Rahnamaye Aliabad, A. Afaq
Chin. Phys. Lett. 2011, 28 (11):
117803
.
DOI: 10.1088/0256-307X/28/11/117803
Chemical bonding as well as structural, electronic and optical properties of CsPbF3 are calculated using the highly accurate full potential linearized augmented plane−wave method within the framework of density functional theory (DFT). The calculated lattice constant is found to be in good agreement with the experimental results. The electron density plots reveal strong ionic bonding in Cs-F and strong covalent bonding in Pb-F. The calculations show that the material is a direct and wide bandgap semiconductor with a fundamental gap at the R-symmetry point. Optical properties such as the real and imaginary parts of the dielectric function, refractive index, extinction coefficient, reflectivity, optical conductivity and absorption coefficient are also calculated. Based on the calculated wide and direct bandgap, as well as other optical properties of the compound, it is predicted that CsPbF3 is suitable for optoelectronic devices and anti-reflecting coatings.
|
|
Mechanical Performances of Carbonitriding Films on Cast Iron by Plasma Electrolytic Carbonitriding
PANG Hua**, ZHANG Gu-Ling, WANG Xing-Quan, LV Guo-Hua, CHEN Huan, YANG Si-Ze,
Chin. Phys. Lett. 2011, 28 (11):
118103
.
DOI: 10.1088/0256-307X/28/11/118103
The plasma electrolytic carbonitriding (PEC/N) process is applied to cast iron using an aqueous solution of acetamide and glycerin as the electrolyte. Mechanical properties of the carbonitriding layers on cast iron are investigated. After the PEC/N treatment, the microhardness and wear resistance of cast iron are improved significantly compared to the untreated substrate. When the substrate is processed at 350 V for 60 s, the coating presents the highest microhardness and it is about 554.14HK0.02, and the coating with the highest hardness has the best wear resistance.
|
|
Partially Loaded Cavity Analysis by Using the 2-D FDTD Method
YAO Bin, ZHENG Qin-Hong, **, PENG Jin-Hui, ZHONG Ru-Neng, XIANG Tai, XU Wan-Song
Chin. Phys. Lett. 2011, 28 (11):
118401
.
DOI: 10.1088/0256-307X/28/11/118401
A compact two-dimensional (2-D) finite-difference time-domain (FDTD) method is proposed to calculate the resonant frequencies and quality factors of a partially loaded cavity that is uniform in the z−direction and has an arbitrary cross section in the x–y plane. With the description of z dependence by kz , the three-dimensional (3-D) problem can be transformed into a 2-D problem. Therefore, less memory and CPU time are required as compared to the conventional 3-D FDTD method. Three representative examples, a half-loaded rectangular cavity, an inhomogeneous cylindrical cavity and a cubic cavity loaded with dielectric post, are presented to validate the utility and efficiency of the proposed method.
|
|
High Performance Polymer Field-Effect Transistors Based on Thermally Crosslinked Poly(3-hexylthiophene)
JIANG Chun-Xia, YANG Xiao-Yan, ZHAO Kai, WU Xiao-Ming, YANG Li-Ying, CHENG Xiao-Man, WEI Jun, YIN Shou-Gen, **
Chin. Phys. Lett. 2011, 28 (11):
118502
.
DOI: 10.1088/0256-307X/28/11/118502
The performance of polymer field-effect transistors is improved by thermal crosslinking of poly(3-hexylthiophene), using ditert butyl peroxide as the crosslinker. The device performance depends on the crosslinker concentration significantly. We obtain an optimal on/off ratio of 105 and the saturate field−effect mobility of 0.34 cm2V−1s−1, by using a suitable ratios of ditert butyl peroxide, 0.5 wt% of poly(3-hexylthiophene). The microstructure images show that the crosslinked poly(3-hexylthiophene) active layers simultaneously possess appropriate crystallinity and smooth morphology. Moreover, crosslinking of poly(3-hexylthiophene) prevents the transistors from large threshold voltage shifts under ambient bias-stressing, showing an advantage in encouraging device environmental and operating stability.
|
|
Effects of Labeling Thiophilic FRET Dyes on the Stability and Dimerization Process of β-Lactoglobulin
PAN Hai, XIE Jin-Bing, CAO Yi**, QIN Meng**, WANG Wei
Chin. Phys. Lett. 2011, 28 (11):
118702
.
DOI: 10.1088/0256-307X/28/11/118702
The stability and dimeric state of β−lactoglobulin (β−lg) can be dramatically affected by labeling the thiophilic agent to Cys121, whereas the underlining mechanism of such an effect is still unclear. We label a fluorescence-resonance-energy-transfer (FRET) pair of donor (1,5-IAEDANS) and acceptor (5-IAF) dyes to Cys121 of β−lg monomers to investigate the effect of bulky thiophilic modification on the structure and stability of β−lg. It is found that the modification dramatically destroys the native structure of β−lg and results in an obvious increase of the α−helical content, coincident with the accumulation of non-native α−helical intermediates during its folding process. Importantly, the dimeric state of β-lg can still be reached whereas its dimerization rate decreases dramatically, allowing us to characterize the dimerization process using the FRET method based on a stopped-flow apparatus. Our results reveal that the dimerization process occurs before the completely folding of individual monomers, providing direct evidence on the cooperativity of folding and binding processes.
|
79 articles
|