Chin. Phys. Lett.  2011, Vol. 28 Issue (11): 110504    DOI: 10.1088/0256-307X/28/11/110504
GENERAL |
Predicting Natural and Chaotic Time Series with a Swarm-Optimized Neural Network
Juan A. Lazzús**
Departamento de Física, Universidad de La Serena, Casilla 554, La Serena, Chile
Cite this article:   
Juan A. Lazzús 2011 Chin. Phys. Lett. 28 110504
Download: PDF(563KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Natural and chaotic time series are predicted using an artificial neural network (ANN) based on particle swarm optimization (PSO). Firstly, the hybrid ANN+PSO algorithm is applied on Mackey–Glass series in the short-term prediction x(t+6), using the current value x(t) and the past values: x(t−6), x(t−12), x(t−18). Then, this method is applied on solar radiation data using the values of the past years: x(t−1), ..., x(t−4). The results show that the ANN+PSO method is a very powerful tool for making predictions of natural and chaotic time series.
Keywords: 05.45.+b      05.45.Tp      05.45.Pq     
Received: 31 May 2011      Published: 30 October 2011
PACS:  05.45.+b  
  05.45.Tp (Time series analysis)  
  05.45.Pq (Numerical simulations of chaotic systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/11/110504       OR      https://cpl.iphy.ac.cn/Y2011/V28/I11/110504
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Juan A. Lazzús
[1] Han M and Wang Y 2009 Exp. Syst. Appl. 36 1280
[2] Bezruchko B P et al 2001 Phys. Rev. E 64 056216
[3] Farmer J D and Sidorowich J J 1987 Phys. Rev. Lett. 59 845
[4] Zhang J S and Xiao X C 2000 Chin. Phys. Lett. 17 88
[5] Wong F S 1991 Neurocomputing 2 147
[6] Chng E S et al 1996 IEEE Trans. Neural Networks 7 190
[7] Kim D and Kim C 1997 IEEE Trans. Fuzzy Systems 5 523
[8] Jang J S R et al 1997 Neuro-fuzzy and Soft Computing (New Jersey: Prentice-Hall)
[9] Lin D, Wang X 2011 Neurocomputing 74 2241
[10] Fu Y Y et al 2010 Exp. Syst. Appl. 37 4441
[11] Cho K B and Wang B H 1996 Fuzzy Sets Syst. 83 325
[12] Chen Y et al 2006 Neurocomputing 69 449
[13] Geethanjali M et al 2008 Neurocomputing 71 904
[14] Lazzús J A 2010 Comput. Math. Appl. 60 2260
[15] Kennedy J and Eberhart R 1995 IEEE Int. Conf. Neural Networks 4 1942
[16] Lazzús J A 2009 Int. J. Thermophys. 30 883
[17] Mackey M C and Glass L 1977 Science 197 287
[18] Farmer J D 1982 Physica D 4 336
[19] Mohandes M et al 1998 Renew. Energy 14 179
[20] Sözen A et al 2004 Energy Convers. Manag. 45 3033
[21] Rehman S and Mohandes M 2008 Energy Policy 36 571
[22] Lazzús J A et al 2011 Appl. Solar Energy 47 66
Related articles from Frontiers Journals
[1] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 110504
[2] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 110504
[3] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 110504
[4] LI Xian-Feng**, Andrew Y. -T. Leung, CHU Yan-Dong. Symmetry and Period-Adding Windows in a Modified Optical Injection Semiconductor Laser Model[J]. Chin. Phys. Lett., 2012, 29(1): 110504
[5] JI Ying**, BI Qin-Sheng . SubHopf/Fold-Cycle Bursting in the Hindmarsh–Rose Neuronal Model with Periodic Stimulation[J]. Chin. Phys. Lett., 2011, 28(9): 110504
[6] KONG De-Ren, XIE Hong-Bo** . Assessment of Time Series Complexity Using Improved Approximate Entropy[J]. Chin. Phys. Lett., 2011, 28(9): 110504
[7] WANG Xing-Yuan**, QIN Xue, XIE Yi-Xin . Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map[J]. Chin. Phys. Lett., 2011, 28(8): 110504
[8] Department of Physics, Eastern Mediterranean University, G. Magosa, N. Cyprus, Mersin 0, Turkey
. Chaos in Kundt Type-III Spacetimes[J]. Chin. Phys. Lett., 2011, 28(7): 110504
[9] WANG Xing-Yuan**, REN Xiao-Li . Chaotic Synchronization of Two Electrical Coupled Neurons with Unknown Parameters Based on Adaptive Control[J]. Chin. Phys. Lett., 2011, 28(5): 110504
[10] SHI Si-Hong, YUAN Yong, WANG Hui-Qi, LUO Mao-Kang** . Weak Signal Frequency Detection Method Based on Generalized Duffing Oscillator[J]. Chin. Phys. Lett., 2011, 28(4): 110504
[11] LI Qun-Hong**, CHEN Yu-Ming, QIN Zhi-Ying . Existence of Stick-Slip Periodic Solutions in a Dry Friction Oscillator[J]. Chin. Phys. Lett., 2011, 28(3): 110504
[12] YANG Yang, WANG Cang-Long, DUAN Wen-Shan**, CHEN Jian-Min . Resonance and Rectification in a Two-Dimensional Frenkel–Kontorova Model with Triangular Symmetry[J]. Chin. Phys. Lett., 2011, 28(3): 110504
[13] FENG Cun-Fang**, WANG Ying-Hai . Projective Synchronization in Modulated Time-Delayed Chaotic Systems Using an Active Control Approach[J]. Chin. Phys. Lett., 2011, 28(12): 110504
[14] JIANG Guo-Hui, ZHANG Yan-Hui**, BIAN Hong-Tao, XU Xue-You . Fractal Analysis of Transport Properties in a Sinai Billiard[J]. Chin. Phys. Lett., 2011, 28(12): 110504
[15] Eduardo L. Brugnago**, Paulo C. Rech. Chaos Suppression in a Sine Square Map through Nonlinear Coupling[J]. Chin. Phys. Lett., 2011, 28(11): 110504
Viewed
Full text


Abstract