Chin. Phys. Lett.  2009, Vol. 26 Issue (3): 030303    DOI: 10.1088/0256-307X/26/3/030303
GENERAL |
Special Lie Symmetry and Hojman Conserved Quantity of Appell Equations for a Holonomic System
JIA Li-Qun1, CUI Jin-Chao1, LUO Shao-Kai2, YANG Xin-Fang1
1School of Science, Jiangnan University, Wuxi 2141222Institute of Mathematical Mechanics and Mathematical Physics, Zhejiang Sci-Tech University, Hangzhou 310018
Cite this article:   
JIA Li-Qun, CUI Jin-Chao, LUO Shao-Kai et al  2009 Chin. Phys. Lett. 26 030303
Download: PDF(251KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract
Special Lie symmetry and Hojman conserved quantity of Appell equations for a holonomic system are studied. Appell equations and differential equations of motion for holonomic mechanic systems are established. Under special Lie nfinitesimal transformations in which the time is invariable, the determining equation of the special Lie symmetry and the expressions of Hojman conserved quantity for Appell equations of holonomic systems are presented. Finally, an example is given to illustrate the application of the results.
Keywords: 03.20.+i      11.30.-j      45.20.Jj      02.20.Sv     
Received: 06 October 2008      Published: 19 February 2009
PACS:  03.20.+i  
  11.30.-j (Symmetry and conservation laws)  
  45.20.Jj (Lagrangian and Hamiltonian mechanics)  
  02.20.Sv (Lie algebras of Lie groups)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/3/030303       OR      https://cpl.iphy.ac.cn/Y2009/V26/I3/030303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
JIA Li-Qun
CUI Jin-Chao
LUO Shao-Kai
YANG Xin-Fang
[1] Noether A E 1918 Nachr. Akad. Wiss. G\"{ottingen. Math. Phys. K I 235
[2] Vujanovi\'c B 1978 Int. J. Non-linear Mech. 13185
[3] Lutzky M 1979 J. Phys. A: Math. Gen. 12973
[4] Lutzky M 1979 Phys. Lett. A 72 86
[5] Lutzky M 1979 Phys. Lett. A 75 8
[6] Vujanovi\'c B 1986 Acta Mech. 65 63
[7] Mei Fengxiang 2000 Acta Phys. Sin. 49 1207(in Chinese)
[8] Zhang Y and Xue Y 2001 Acta Phys. Sin. 50816 (in Chinese)
[9] Zhang H B 2002 Chin. Phys. 11 1
[10] Luo S K 2003 Acta Phys. Sin. 52 2941 (inChinese)
[11] Fang J H, Zhang P Y 2004 Acta Phys. Sin. 534041 (in Chinese)
[12] Fu J L, Chen L Q and Xie F P 2004 Chin. Phys. 13 1611
[13] Gu S L, Zhang H B 2005 Acta Phys. Sin. 543983 (in Chinese)
[14] Ge W K, Zhang Y 2005 Acta Phys. Sin. 544985 (in Chinese)
[15] Xu X J, Mei F X and Zhang Y F 2006 Chin. Phys. 15 19
[16] Lou Z M 2006 Chin. Phys. 15 891
[17] Jia L Q, Zhang Y Y and Zheng S W 2007 Acta Phys.Sin. 56 649 (in Chinese)
[18] Xie J F, Gang T Q and Mei F X 2008 Chin. Phys. B 17 390
[19] Luo S K, Zhang Y F et al 2008 Advances in theStudy of Dynamics of Constrained Systems (Beijing: Science Press)(in Chinese)
[20] Mei F X 2001 Chin. Phys. 10 177
[21] Li R J, QiaoY F and Meng J 2002 Acta Phys. Sin. 51 1 (in Chinese)
[22] Luo S K 2002 Acta Phys. Sin. 51 712 (inChinese)
[23] Jia L Q, Zhang Y Y and Zheng S W 2007 J. YunnanUniv. 29 589 (in Chinese)
[24] Jia L Q, Xie J F and Zheng S W 2008 Chin. Phys.B 17 17
Related articles from Frontiers Journals
[1] HUANG Chao-Guang,**,TIAN Yu,WU Xiao-Ning,XU Zhan,ZHOU Bin. New Geometry with All Killing Vectors Spanning the Poincaré Algebra[J]. Chin. Phys. Lett., 2012, 29(4): 030303
[2] ZHENG Shi-Wang, WANG Jian-Bo, CHEN Xiang-Wei, XIE Jia-Fang. Mei Symmetry and New Conserved Quantities of Tzénoff Equations for the Variable Mass Higher-Order Nonholonomic System[J]. Chin. Phys. Lett., 2012, 29(2): 030303
[3] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 030303
[4] FENG Hai-Ran**, CHENG Jie, YUE Xian-Fang, ZHENG Yu-Jun, DING Shi-Liang . Analytical Research on Rotation-Vibration Multiphoton Absorption of Diatomic Molecules in Infrared Laser Fields[J]. Chin. Phys. Lett., 2011, 28(7): 030303
[5] JIANG Zhi-Wei . A New Model for Quark Mass Matrix[J]. Chin. Phys. Lett., 2011, 28(6): 030303
[6] XU Wei, YUAN Bo, AO Ping, ** . Construction of Lyapunov Function for Dissipative Gyroscopic System[J]. Chin. Phys. Lett., 2011, 28(5): 030303
[7] YAN Lu, SONG Jun-Feng, QU Chang-Zheng** . Nonlocal Symmetries and Geometric Integrability of Multi-Component Camassa–Holm and Hunter–Saxton Systems[J]. Chin. Phys. Lett., 2011, 28(5): 030303
[8] XIA Li-Li . A Field Integration Method for a Nonholonomic Mechanical System of Non-Chetaev's Type[J]. Chin. Phys. Lett., 2011, 28(4): 030303
[9] WANG Peng . Perturbation to Noether Symmetry and Noether adiabatic Invariants of Discrete Mechanico-Electrical Systems[J]. Chin. Phys. Lett., 2011, 28(4): 030303
[10] LI Ji-Na, ZHANG Shun-Li, ** . Approximate Symmetry Reduction for Initial-value Problems of the Extended KdV-Burgers Equations with Perturbation[J]. Chin. Phys. Lett., 2011, 28(3): 030303
[11] WANG Hong**, TIAN Ying-Hui, CHEN Han-Lin . Non-Lie Symmetry Group and New Exact Solutions for the Two-Dimensional KdV-Burgers Equation[J]. Chin. Phys. Lett., 2011, 28(2): 030303
[12] XIA Li-Li . Poisson Theory and Inverse Problem in a Controllable Mechanical System[J]. Chin. Phys. Lett., 2011, 28(12): 030303
[13] HUANG Wei-Li, CAI Jian-Le** . Conformal Invariance of Higher-Order Lagrange Systems by Lie Point Transformation[J]. Chin. Phys. Lett., 2011, 28(11): 030303
[14] NI Jun . Unification of General Relativity with Quantum Field Theory[J]. Chin. Phys. Lett., 2011, 28(11): 030303
[15] ZHANG Yi** . The Method of Variation of Parameters for Solving a Dynamical System of Relative Motion[J]. Chin. Phys. Lett., 2011, 28(10): 030303
Viewed
Full text


Abstract