GENERAL |
|
|
|
|
Calculation of Covariance Matrix for Multi-mode Gaussian States in Decoherence Processes |
XIANG Shao-Hua1,2, SHAO Bin2, SONG Ke-Hui1 |
1Department of Physics and Electronic Information Science, Huaihua University, Huaihua 4180082Department of Physics, Beijing Institute of Technology, Beijing 100081 |
|
Cite this article: |
XIANG Shao-Hua, SHAO Bin, SONG Ke-Hui 2009 Chin. Phys. Lett. 26 030304 |
|
|
Abstract We investigate the dynamics of n single-mode continuous variable systems in a generic Gaussian state under the influence of the independent and correlated noises making use of the characteristic function method. In two models the bath is assumed to be a squeezed thermal one. We derive an explicit input-output expression between the initial and final covariance matrices. As an example, we study the evolution of entanglement of three-mode Gaussian state embedded in two noisy models.
|
Keywords:
03.67.Mn
03.65.Yz
03.67.-a
|
|
Received: 02 July 2008
Published: 19 February 2009
|
|
PACS: |
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
03.67.-a
|
(Quantum information)
|
|
|
|
|
[1] Bennett C H, Brassard G, Cr\'epeau C, Jozsa R, Peres A andWootters W K 1993 Phys. Rev. Lett. 70 1895 [2] Ekert A 1991 Phys. Rev. Lett. 67 661 [3] Zurk W H and Paz J P 1994 Phys. Rev. Lett. 722508 [4] Zurk W H 2003 Rev. Mod. Phys. 75 715 [5] Braun D, Haake F and Strunz W T 2001 Phys. Rev.Lett. 86 2193 [6] Yeo Y 2003 Phys. Rev. A 67 054304 [7] McAneney H, Lee J and Kim M S 2003 Phys. Rev. A 68 063814 [8] Yu T and Eberly J H 2004 Phys. Rev. Lett. 93140404 [9] Kimble H J and Walls D F 1987 J. Opt. Soc. Am. B 40 1450 [10] Reck M and Zeilinger A 1994 Phys. Rev. Lett. 73 58 [11] Furusawa A,Sorensen J L, Brausntein S L, Fuchs C A,KimbleH J and Polzik E S 1998 Science 282 706 [12] Opatrny T, Kurizki G and Welsch D G 2000 Phys. Rev.A 61 032302 [13] Zhangn T C, Goh K W, Chou C W, Lodahl P and Kimble H J2003 Phys. Rev. A 67 033802 [14] Li H R, Li F L, Yang Y and Zhang Q 2005 Phys. Rev.A 71 022314 [15] Grosshans F, Assche G V, Wenger R M, Brouri R, Cerf N Jand Grangier P 2003 Nature 421 238 [16] Jeong H, Lee J and Kim M S 2000 Phys. Rev. A 61 052101 [17] Tohya H 2001 Phys. Rev. A 63 022305 [18] Jakub S P B 2004 J. Phys. A: Math. Gen. 37L173 [19] Serafini A, Illuminati F, Paris M G A and De Siena S2004 Phys. Rev. A 69 022318 [20] Chen X Y 2006 Phys. Rev. A 73 022307 Xiang S H, Shao B and Song K H 2008 Phys. Rev. A 78 052313 [21] Adesso G and Illuminati F 2007 J. Phys. A: Math.Theor. 40 7821 [22] Ferraro A and Paris M G A 2005 Phys. Rev. A 72 032312 [23] Tan H T, Li G X and Zhu S Y 2007 Phys. Rev. A 75 063815 [24] Duan L M, Giedke G, Cirac J I and Zoller P 2000 Phys. Rev. Lett. 84 2722 [25] Adesso G, Serafini A and Illuminati F 2004 Phys.Rev. Lett. 92 087901 [26] Grewal K S 2003 Phys. Rev. A 67 022107 [27] Lu H X,Yang J,Zhang Y D and Chen Z B 2003 Phys.Rev. A 67 024101 [28] Tan H T, Xia H X and Li G X 2005 Chin. Phys. 14 1382 [29] Scully M O and Zubairy M S 1997 Quantum Optics(Cambridge: Cambridge University) chap 8 p 254 [30] Barnett M S and Radmore P M 1997 Method inTheoretical Quantum Optics (Oxford: Clarendon) chap 4 p 112 [31] Peres A 1996 Phys. Rev. Lett. 77 1413 [32] Giedke G, Kraus B, Lewenstein M and Cirac J I 2001 Phys. Rev. A 64 052303 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|