GENERAL |
|
|
|
|
A Solved Model to Show Insufficiency of Quantitative Adiabatic Condition |
LIU Long-Jiang, LIU Yu-Zhen, TONG Dian-Min |
Department of Physics, Shandong University, Ji'nan 250100 |
|
Cite this article: |
LIU Long-Jiang, LIU Yu-Zhen, TONG Dian-Min 2009 Chin. Phys. Lett. 26 030302 |
|
|
Abstract The adiabatic theorem is a useful tool in processing quantum systems slowly evolving, but its practical application depends on the quantitative condition expressed by Hamiltonian's eigenvalues and eigenstates, which is usually taken as a sufficient condition. Recently, the sufficiency of the condition was questioned, and several counterexamples have been reported. Here we present a new solved model to show the insufficiency of the traditional quantitative adiabatic condition.
|
Keywords:
03.65.Ta
03.65.Vf
|
|
Received: 22 December 2008
Published: 19 February 2009
|
|
PACS: |
03.65.Ta
|
(Foundations of quantum mechanics; measurement theory)
|
|
03.65.Vf
|
(Phases: geometric; dynamic or topological)
|
|
|
|
|
[1] Ehrenfest P 1916 Ann. Phys. 51 327 [2]Born M and Fock V 1928 Z. Phys. 51 165 [3]Kato T 1950 J. Phys. Soc. Jpn. 5 435 [4]Messiah A 1970 Quantum Mechanics (Amsterdam:North-Holland) p 739 [5]Landau L D 1932 Zeitschrift 2 46 [6]Zener C 1932 Proc. R. Soc. London A 137 696 [7]Gell-Mann M and Low F 1951 Phys. Rev. 84 350 [8]Berry M V 1984 Proc. R. Soc. London A 392 45 [9]Oreg J, Hioe F T and Eberly J H 1984 Phys. Rev. A 29 690 [10]Schiemann S et al 1993 Phys. Rev. Lett. 713637 [11]Pillet P et al 1993 Phys. Rev. A 48 845 [12]Childs A M, Farhi E and Preskill J 2002 Phys. Rev. A 65 012322 [13]Farhi E et al 2001 Science 292 472 [14]Thunstr\"om P, \AA berg J and Sj\"oqvist E 2005 Phys.Rev. A 72 022328 [15]Sun C P 1989 Chin. Phys. Lett. 6 97 [16]Marzlin K P and Sanders B C 2004 Phys. Rev. Lett. 93 16 [17]Tong D M et al 2005 Phys. Rev. Lett. 95110407 [18]Tong D M et al 2005 Phys. Lett. A 339 288 [19]Vertesi T and Englman R 2006 Phys. Lett. A 35311 [20]Larson J and Stenholm S 2006 Phys. Rev. A 73033805 [21]Mackenzie R, Marcotte E and Paquette H 2006 Phys.Rev. A 73 042104 [22]Duki S, Mathur H and Narayan O 2006 Phys. Rev. Lett. 97 128901 [23]Ma J et al 2006 Phys. Rev. Lett. 97 128902 [24]Yi X X et al 2007 J. Phys. B 40 281 [25]Tong D M et al 2007 Phys. Rev. Lett. 98150402 [26]Ye M L et al 2007 Phys. Lett. A 368 18 [27]Jansen S, Ruskai M B and Seiler R 2007 J. Math.Phys. 48 102111 [28]Liu J and Fu L B 2007 Phys. Lett. A 370 17 [29]Mackenzie R et al 2007 Phys. Rev. A 76 044102 [30]Wei Z H and Ying M S 2007 Phys. Rev. A 76024304 [31]Fujikawa K 2008 Phys. Rev. D 77 045006 [32]Zhao Y 2008 Phys. Rev. A 77 032109 [33]Tong D M et al 2008 Phys. Lett. A 372 2364 [34]O'Hara M J and O'Leary D P 2008 Phys. Rev. A 77 042319 [35]Wu J D et al 2008 Phys. Rev. A 77 062114 [36]Du J F et al 2008 Phys. Rev. Lett. 101 060403 [37]Maamache M and Saadi Y 2008 Phys. Rev. Lett. 101 150407 [38]Ambainis A and Regev O 2004 quant-ph/0411152 [39]Sarandy M S, Wu L A and Lidar D A 2004 quant-ph/0405059 [40]Wei Z H and Ying M S 2007 quant-ph/0701135 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|