Chin. Phys. Lett.  2009, Vol. 26 Issue (2): 027501    DOI: 10.1088/0256-307X/26/2/027501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Stability Investigation of Colloidal FePt Nanoparticle Systems by Spectrophotometer Analysis
M. Farahmandjou1, S. A. Sebt1, S. S. Parhizgar1, P. Aberomand1, M. Akhavan2
1Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran2Magnet Research Laboratories (MRL), Department of Physics, Sharif University of Technology, Tehran, Iran
Cite this article:   
M. Farahmandjou, S. A. Sebt, S. S. Parhizgar et al  2009 Chin. Phys. Lett. 26 027501
Download: PDF(336KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract FePt magnetic nanoparticle systems are an excellent candidate for ultrahigh-density magnetic recording. Monodisperse FePt nanoparticles are synthesized by superhydride reduction of FeCl2・4H2O and Pt(acac)2 at 263°C under N2 atmosphere. Transmission electron microscopy (TEM) images show monosize FePt nanoparticles with diameter of 4nm and a standard deviation of about 10%. The average distance between monodispesre particles is nearly 3nm, and oleic acid and oleylamine surround the nanoparticles as surfactants. Stability investigation of nanoparticle colloidal solution is done via spectrophotometery analysis. The results for FePt nanoparticles dispersed in hexane indicate that adding surfactants with concentration of 3×10-3 part by volume for centrifugation stage increases the stability of FePt nanoparticles solution with concentration of 16mg/mL, about 67%.
Keywords: 75.50.Tt      75.75.+a      75.50.Ss     
Received: 03 September 2008      Published: 20 January 2009
PACS:  75.50.Tt (Fine-particle systems; nanocrystalline materials)  
  75.75.+a  
  75.50.Ss (Magnetic recording materials)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/2/027501       OR      https://cpl.iphy.ac.cn/Y2009/V26/I2/027501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
M. Farahmandjou
S. A. Sebt
S. S. Parhizgar
P. Aberomand
M. Akhavan
[1] Nguyen L H et al 2005 J. Mater. Chem. 15 5136
[2] Liu P J et al 2006 IEEE Trans. Magn. 42 3036
[3] Sun S 2006 Adv. Mater. 18 393
[4] Elkins K et al 2005 J. Phys. D: Appl. Phys. 382306
[5] David Sellmyer and Ralf Skomski 2006 AdvancedMagnetic Nanostructures (Berlin: Springer) p 239
[6] Shan Wang and Alexander Taratorin 1999 MagneticInformation Storage Technology (New York: Academic) p 177
[7] Christodoulides A J et al 2003 Phys. Rev. B 68054428
[8] Sun S et al 2003 J. Phys. Chem. B 107 5419
[9] V\'{azquez M et al 2004 Physica B 354 71
[10] Acet M et al 2005 J. Cryst. Growth 285 365
[11] Scherer C, Neto F A 2005 Braz. J. Phys. 35 718
[12] Shukla N et al 2007 Colloids and Surfaces A 301 113
[13] Shukla N et al 2004 J. Magn. Magn. Mater. 272e1349
[14] Klokkenburg M et al 2007 Vibration. Spectrosc. 43 243
[15] Zoriasatain S et al 2006 J. Magn. Magn. Mater 300 526
Related articles from Frontiers Journals
[1] YUAN Xiao-Bo, REN Jun-Feng, HU Gui-Chao. Effect of Carrier Differences on Magnetoresistance in Organic and Inorganic Spin Valves[J]. Chin. Phys. Lett., 2012, 29(6): 027501
[2] ZHANG Jing-Jing,GAO Hong-Mei,YAN Yu,BAI Xue,WANG Wen-Quan,SU Feng,DU Xiao-Bo**. Processing YCo5 Permanent Magnetic Submicron Flakes by Surfactant-Assisted High-Energy Ball Milling[J]. Chin. Phys. Lett., 2012, 29(5): 027501
[3] CHEN Feng-Liang,ZHOU Shi-Ming**. Magnetoresistance Effect in Antiferromagnet-Based Nanogranular Films[J]. Chin. Phys. Lett., 2012, 29(4): 027501
[4] LI Yong-Le, HUANG An-Ping, FENG Tang-Fu, CHEN Qiang, SHU Xiao-Lin, CHEN Jun-Yang, CHEN Zi-Yu, ** . Effect of a Boron Underlayer on the Ordering and Orientation of Sputtered FePt Film[J]. Chin. Phys. Lett., 2011, 28(6): 027501
[5] ZHONG Ke-Hua**, WENG Zhen-Zhen, FENG Qian, YANG Yan-Min, HUANG Zhi-Gao** . Magnetism and Substrate Effects of Mn3 Clusters on Cu(111), Pd(111) and Ne(111)[J]. Chin. Phys. Lett., 2011, 28(5): 027501
[6] LÜ, Dong-Li, XU Chen. Magnetization Switching in a Small Disk with Shape Anisotropy[J]. Chin. Phys. Lett., 2010, 27(9): 027501
[7] WANG Fei, YAN Yu, YUAN Zhou, BAI Xue, DU Xiao-Bo, WANG Wen-Quan, SU Feng, JIN Han-Min. Permanent Magnetic Properties of Melt-Spun YCo5Cx Ribbons[J]. Chin. Phys. Lett., 2010, 27(6): 027501
[8] HUO Qiu-Hong, WANG Ru-Zhi, CHEN Si-Ying, XUE Kun, YAN Hui. Spin Transport in a Magnetic Superlattice with Broken Two-Fold Symmetry[J]. Chin. Phys. Lett., 2010, 27(6): 027501
[9] GUO Jia-Jun, CHEN Lei, ZHAO Xu, FAN Su-Li, CHEN Wei. Effective Anisotropy in Magnetically Nd2Fe14B/α-Fe Nanocomposite[J]. Chin. Phys. Lett., 2010, 27(5): 027501
[10] XIANG Jun, SHEN Xiang-Qian, SONG Fu-Zhan, MENG Xian-Feng. Fabrication and Characterization of Mn0.5Zn0.5Fe2O4 Magnetic Nanofibers[J]. Chin. Phys. Lett., 2010, 27(1): 027501
[11] ZHUANG Bin, XU Yan, LAI Heng, HUANG Zhi-Gao, CHEN Shui-Yuan, LIN Ying-Bin, LI Shang-Dong, LAI Fa-Chun. Enhanced Magnetoresistance of (La0.67Ca0.33MnO3) Composites Coated byZn0.95Co0.05O[J]. Chin. Phys. Lett., 2009, 26(5): 027501
[12] FA Tao, XIANG Qing-Pei, YAO Shu-De. Fabrication of Co/CoO Exchange Bias System by Ion Implantation and Its Magnetic Properties[J]. Chin. Phys. Lett., 2009, 26(12): 027501
[13] LIANG Qing-Cheng, SHI Jia-Wei, GUO Shu-Xu, LIU Kui-Xue, CAO Jun-Sheng. Dependence of Junction Voltage Saturation on Uniformity and Quality of Laser Diode Bars[J]. Chin. Phys. Lett., 2009, 26(12): 027501
[14] LI Yong-Feng, LIU Gui-Bin, SHI Li-Jie, LIU Bang-Gui. Fe-Vacancy-Induced Ferromagnetism in Tetragonal FeSe Thin Films[J]. Chin. Phys. Lett., 2009, 26(12): 027501
[15] WU Hong-Ye, ZOU Tao, CHENG Zhao-Hua, SUN Young. Vortex Pinning due to Dynamic Spin-Vortex Interaction in aSuperconductor/Ferromagnet Multilayer[J]. Chin. Phys. Lett., 2009, 26(1): 027501
Viewed
Full text


Abstract