Chin. Phys. Lett.  2009, Vol. 26 Issue (2): 027403    DOI: 10.1088/0256-307X/26/2/027403
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Mode-II Crack Problem for a Long Rectangular Slab of Superconductor under an Electromagnetic Force
GAO Zhi-Wen, ZHOU You-He
Key Laboratory of Mechanics on Western Disaster and Environment (Ministry of Education), and Department of Mechanics, Lanzhou University, Lanzhou 730000
Cite this article:   
GAO Zhi-Wen, ZHOU You-He 2009 Chin. Phys. Lett. 26 027403
Download: PDF(323KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present a theoretical analysis to the fracture parameters of the large single domain YBCO superconductor with a tangential line crack under electromagnetic force. The mode-II fracture parameters are obtained due to coupled finite element and infinite element method, and the numerical results are conducted for two activation processes. For a zero-field cooling (ZFC) magnetization process, in the process of magnetic field descent, the larger the applied field is, the larger the stress intensity factors. In the case of field cooling (FC) magnetization process, the stress intensity factors have obvious differences between the two cases of bfc >1 and bfc≤1. Additionally, J-integral characteristic is obtained, and according to these results, the mode-II crack growth trend is predicted. These results are benefit for us to understand the fracture mechanism of superconductor both in theory and application.
Keywords: 74.25.Ld      46.50.+a      74.90.+n     
Received: 24 April 2008      Published: 20 January 2009
PACS:  74.25.Ld (Mechanical and acoustical properties, elasticity, and ultrasonic Attenuation)  
  46.50.+a (Fracture mechanics, fatigue and cracks)  
  74.90.+n (Other topics in superconductivity)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/2/027403       OR      https://cpl.iphy.ac.cn/Y2009/V26/I2/027403
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GAO Zhi-Wen
ZHOU You-He
[1] Hull J. 2000 Supercond. Sci. Technol. 13 R1
[2] Hull J, Murakami M. 2004 Proc. IEEE 92 1705
[3] Nagashima K, Higuchi T. 1997 Cryogenics 37 577
[4] Ren Y, Weinstein R. 1995 Physica C 251 15
[5] Miyamoto T, Nagashima K. 2000 Physica C 340 41
[6] Tomita M, Murakami M. 2001 Physica C 354 358
[7] Tsuchimoto M, Takashima H. 2002 Physica C 378--381 718
[8] Nariki S, Sakai N. 2002 Physica C 378--381 779
[9] Tomita M, Murakami M. 2002 Physica C 378-381783
[10] Tomita M, Murakami M. 2003 Physica C 392--396493
[11] Murakami A, Katagiri K. 2003 Physica C 392--396 557
[12] Okudera T, Murakami A. 2003 Physica C 392--396 628
[13] Murakami A, Katagiri K. 2005 Physica C 426--431 644
[14] Katagiri K, Sato T. 2005 Physica C 426--431709
[15] Murakami A, Katagiri K. 2006 Physica C 445--448 361
[16] Zhou Y, Yong H. 2007 Phys. Rev. B 76 094523
[17] Zhang W, Li Z, Chen X, Cai L, Jing F. 2008 Chin.Phys. Lett. 25 2603
[18] Chen L, Li H. 2003 Chin. Phys. Lett. 20 1128
[19] Ikuta. H, Hirota. N, Nakayama. Y, Kishio. K, Kitazawa. K.1993 Phys. Rev. Lett. 70 2166
[20] Johansen T. 1998 Phys. Rev. Lett. 80 4757
[21] Johansen T. 1999 Phys. Rev. B 59 11187
[22] Johansen T. 1999 Phys. Rev. B 60 9690
[23] Johansen T, Wang C. 2000 J. Appl. Phys. 882730
[24] Johansen T. 2000 Supercond. Sci. Technol. 13R121
[25] Wan Y, Fang D, Soh A and Hwang K 2003 Fatigue Fract.Enging. Mater. Struct. 26 1091
[26] Wan Y, Fang D and Soh A 2004 Int. J. Solids Struct. 41 6129
[27] Zienkiewicz O, Emson C. 1983 Int. J. Numer. Methods Engin. 19 393
[28] Shih C F, Moran B and Nakamura T 1986 Int. J.Fracture 30 79
[29] Bean C P 1962 Phys. Rev. Lett 8 250
Related articles from Frontiers Journals
[1] ZHANG Xiao-Dong, JIANG Zhen-Yi**, ZHOU Bo, HOU Zhu-Feng, HOU Yu-Qing . High-Order Elastic Constants and Anharmonic Properties of NaBH4: First-Principles Calculations[J]. Chin. Phys. Lett., 2011, 28(7): 027403
[2] ZHOU Yong, WANG Gui-Ling, LI Cheng-Ming, PENG Qin-Jun, CUI Da-Fu, XU Zu-Yan, WANG Xiao-Yang, ZHU Yong, CHEN Chuang-Tian, LIU Guo-Dong, DONG Xiao-Li, ZHOU Xing-Jiang. Sixth Harmonic of A Nd:YVO4 Laser Generation In KBBF for ARPES[J]. Chin. Phys. Lett., 2008, 25(3): 027403
[3] LIANG Ting, QU Ti-Ming, LI Pei, HAN Zheng-He. Mechanical Properties of (Bi,Pb)-2223 Multifilament Tapes with Ag-Alloy Sheath[J]. Chin. Phys. Lett., 2006, 23(4): 027403
[4] CHENG Ze. Photonic Superfluidity in a Kerr Nonlinear Black Body[J]. Chin. Phys. Lett., 2005, 22(4): 027403
[5] LIU Su, SHEN Rui, ZHENG Zhi-Ming, XING Ding-Yu. Incompatibility of d-Wave Pairing and Ferromagnetism in a Uniform System[J]. Chin. Phys. Lett., 2003, 20(2): 027403
[6] LI Qin, FU Ze-Lu, JI Zheng-Ming, FENG Yi-Jun, KANG Lin, YANG Sen-Zu, WU Pei-Heng, WANG Xiao-Shu, YE Yu-Da. Experimental Study of the Plasma Fluorination of Y-Ba-Cu-O Thin Films[J]. Chin. Phys. Lett., 2002, 19(9): 027403
[7] FENG Xue, FANG Dai-Ning, HWANG Keh-Chih. Mechanical and Magnetostrictive Properties of Fe-Doped Ni52Mn24Ga24 Single Crystals[J]. Chin. Phys. Lett., 2002, 19(10): 027403
[8] LI Shao-Chun, WANG Ru-Ju, LI Feng-Ying, LIU Zhen-Xing, ZHU Jia-Lin, YU Ri-Cheng, JIN Chang-Qing. Ultrasonic Properties of the MgB2 Superconductor[J]. Chin. Phys. Lett., 2001, 18(10): 027403
[9] Yu. V. Kislinskii, ZHAO Bai-ru, WU Pei-jun, PENG Zhi-qiang, CHEN Ying-fei, YANG Tao, CHEN Lie, SUN Ji-jun, XU Bo, WU Fei, ZHOU Yue-liang, LI Lin, ZHAO Zhong-xian, E. A. Stepantsov. YBa2Cu3O7 Bicrystal Josephson Junctions and dc SQUIDs[J]. Chin. Phys. Lett., 1996, 13(5): 027403
[10] CHEN Yingfei, CHEN Lie, TAO Hongjie, LI Jingdong, WU Peijun, YANG Qiansheng, SHAO Kai* . Properties of DC SQUIDs Made from YBCO and TBCCO Films[J]. Chin. Phys. Lett., 1992, 9(2): 027403
Viewed
Full text


Abstract