Chin. Phys. Lett.  2008, Vol. 25 Issue (9): 3500-3503    DOI:
Original Articles |
Spatial Pattern of an Epidemic Model with Cross-diffusion
LI Li, JIN Zhen, SUN Gui-Quan
Department of Mathematics, North University of China, Taiyuan 030051
Cite this article:   
LI Li, JIN Zhen, SUN Gui-Quan 2008 Chin. Phys. Lett. 25 3500-3503
Download: PDF(1843KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Pattern formation of a spatial epidemic model with both self- and cross-diffusion is investigated. From the Turing theory, it is well known that Turing pattern formation cannot occur for the equal self-diffusion coefficients. However, combined with cross-diffusion, the system will show emergence of isolated groups, i.e., stripe-like or spotted or coexistence of both, which we show by both mathematical analysis and numerical simulations. Our study shows that the interaction of self- and cross-diffusion can be considered as an important mechanism for the appearance of complex spatiotemporal dynamics in epidemic models
Keywords: 87.23.Cc      82.40.Ck      05.45.Pq     
Received: 13 May 2008      Published: 29 August 2008
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I9/03500
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Li
JIN Zhen
SUN Gui-Quan
[1] Bernoulli D 1760 M\'{em. Math. Phys. Acad. R. Sci.Paris p 1
[2] Hufnagel L, Brockmann D, and Geisel T 2004 Proc.Natl. Acad. Sci. U.S.A. 101 15124
[3] Keeling M J, Woolhouse M E J, Shaw D J, Matthews L,Chase-Topping M, Haydon D T, Cornell S J, Kappey J, Wilesmith J,and Grenfell B T 2001 Science 294 813
[4] Smith D L, Lucey B, Waller L A, Childs J E, and Real L A\newblock 2002 Proc. Natl. Acad. Sci. U.S.A. 99 3668
[5] Keeling M J, Woolhouse M E J, May R M, Davies G andGrenfell B T 2003 Nature 421 136
[6] Hanski I 1983 Ecology 64 493
[7] Hastings A 1990 Ecology 71 426
[8] Conroy M J, Cohen Y, James F C, Matsinos Y G and Maurer BA 1995 Ecol. Appl. 5 17
[9] Kot M, Lewis M A and van den Driessche P 1996 Ecology 77 2027
[10] Ruckelshaus M, Hartway C and Kareiva P 1997 Conserv. Biol. 11 1298
[11] Fagan W F, Lewis M A, Neubert M G and vanden Driessche P 2002 Ecol. Lett. 5 148
[12] Liu W m, Levin S A and Iwasa Y 1987 J. Math. Biol. 25 359
[13] Liu W m, Hethcote H W, Levin S A 1986 J. Math.Biol. 23 187
[14] Sun G, Jin Z, Liu Q X and Li L 2007 J. Stat. Mech.P11011
[15] Sun G Q, Jin Z, Liu Q X and Li L 2008 Chin. Phys.Lett. 25 2296
[16] Ouyang Q 2000 Pattern Formation in aReaction-Diffusion Systems (Shanghai: Scientific and TechnologicalEducation Publishing House) (in Chinese)
[17]Murray J D 1993 Mathematical Biology 2nd edn(Berlin: Springer)
Related articles from Frontiers Journals
[1] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 3500-3503
[2] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 3500-3503
[3] LI Xian-Feng**, Andrew Y. -T. Leung, CHU Yan-Dong. Symmetry and Period-Adding Windows in a Modified Optical Injection Semiconductor Laser Model[J]. Chin. Phys. Lett., 2012, 29(1): 3500-3503
[4] JI Ying**, BI Qin-Sheng . SubHopf/Fold-Cycle Bursting in the Hindmarsh–Rose Neuronal Model with Periodic Stimulation[J]. Chin. Phys. Lett., 2011, 28(9): 3500-3503
[5] WANG Xing-Yuan**, QIN Xue, XIE Yi-Xin . Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map[J]. Chin. Phys. Lett., 2011, 28(8): 3500-3503
[6] Department of Physics, Eastern Mediterranean University, G. Magosa, N. Cyprus, Mersin 0, Turkey
. Chaos in Kundt Type-III Spacetimes[J]. Chin. Phys. Lett., 2011, 28(7): 3500-3503
[7] WANG Xing-Yuan**, REN Xiao-Li . Chaotic Synchronization of Two Electrical Coupled Neurons with Unknown Parameters Based on Adaptive Control[J]. Chin. Phys. Lett., 2011, 28(5): 3500-3503
[8] SHI Si-Hong, YUAN Yong, WANG Hui-Qi, LUO Mao-Kang** . Weak Signal Frequency Detection Method Based on Generalized Duffing Oscillator[J]. Chin. Phys. Lett., 2011, 28(4): 3500-3503
[9] LI Qun-Hong**, CHEN Yu-Ming, QIN Zhi-Ying . Existence of Stick-Slip Periodic Solutions in a Dry Friction Oscillator[J]. Chin. Phys. Lett., 2011, 28(3): 3500-3503
[10] YANG Yang, WANG Cang-Long, DUAN Wen-Shan**, CHEN Jian-Min . Resonance and Rectification in a Two-Dimensional Frenkel–Kontorova Model with Triangular Symmetry[J]. Chin. Phys. Lett., 2011, 28(3): 3500-3503
[11] LI Guang-Zhao, CHEN Yong-Qi, TANG Guo-Ning**, LIU Jun-Xian . Spiral Wave Dynamics in a Response System Subjected to a Spiral Wave Forcing[J]. Chin. Phys. Lett., 2011, 28(2): 3500-3503
[12] FENG Cun-Fang**, WANG Ying-Hai . Projective Synchronization in Modulated Time-Delayed Chaotic Systems Using an Active Control Approach[J]. Chin. Phys. Lett., 2011, 28(12): 3500-3503
[13] JIANG Guo-Hui, ZHANG Yan-Hui**, BIAN Hong-Tao, XU Xue-You . Fractal Analysis of Transport Properties in a Sinai Billiard[J]. Chin. Phys. Lett., 2011, 28(12): 3500-3503
[14] Juan A. Lazzús** . Predicting Natural and Chaotic Time Series with a Swarm-Optimized Neural Network[J]. Chin. Phys. Lett., 2011, 28(11): 3500-3503
[15] Eduardo L. Brugnago**, Paulo C. Rech. Chaos Suppression in a Sine Square Map through Nonlinear Coupling[J]. Chin. Phys. Lett., 2011, 28(11): 3500-3503
Viewed
Full text


Abstract