Original Articles |
|
|
|
|
Spatial Games Based on Pursuing the Highest Average Payoff |
YANG Han-Xin1, WANG Bing-Hong1, WANG Wen-Xu2, RONG Zhi-Hai3 |
1Department of Modern Physics, University of Science and Technology of China, Hefei 230022Department of Electronic Engineering, Arizona State University, Tempe, Arizona 85287-5706, USA3Complex Networks and Control Lab, Department of Automation, Shanghai Jiao Tong University, Shanghai 200240 |
|
Cite this article: |
YANG Han-Xin, WANG Bing-Hong, WANG Wen-Xu et al 2008 Chin. Phys. Lett. 25 3504-3506 |
|
|
Abstract We propose a strategy updating mechanism based on pursuing the highest average payoff to investigate the prisoner's dilemma game and the snowdrift game. We apply the new rule to investigate cooperative behaviours on regular, small-world, scale-free networks, and find spatial structure can maintain cooperation for the prisoner's dilemma game. In the snowdrift game, spatial structure can inhibit or promote cooperative behaviour which depends on payoff parameter. We further study cooperative behaviour on scale-free network in detail. Interestingly, non-monotonous behaviours observed on scale-free network with middle-degree individuals have the lowest cooperation level. We also find that large-degree individuals change their strategies more frequently for both games..
|
Keywords:
87.23.Kg
02.50.Le
87.23.Ge
89.75.Cc
|
|
Received: 29 May 2008
Published: 29 August 2008
|
|
|
|
|
|
[1] Colman A M 1995 Game Theory and itsApplications in the Social and Biological Sciences(Oxford: Butterworth-Heinemann) [2] Axelrod R 1984 The Evolution of Cooperation(New York: Basic books) [3] Neumann J and Morgenstern O 1944 Theory of Games and Economic Behaviour (Princeton: Princeton University Press) [4] Smith J M and Price G 1973 Nature 246 15 [5] Hofbauer J and Sigmund K 1998 Evolutionary Gamesand Poulation Dynamics (Cambridge: Cambridge University Press) [6] Nowak M and May R M 1992 Nature 359 826 [7] Doebeli M et al 1998 Proc. Natl. Acad. Sci.U.S.A. 95 8676 [8] Hauert C and Doebeli M 2004 Nature 428 643 [9] Zhong L X et al 2006 Europhys. Lett. 76 724 [10] Chen Y S et al 2007 Physica A 385 379 [11] Guan J Y et al 2007 Phys. Rev. E 76 056101 [12] Szab{\'o G and T \"o ke C 1998 Phys. Rev. E 58 69 [13] Szab {\'o G and Hauert C 2002 Phys. Rev. Lett. 89 118101 [14] Kim B K et al 2002 Phys. Rev. E 66 021907 [15] Szab {\'o G and Vukov J 2004 Phys. Rev. E 69 036107 [16] Santos F C and Pacheco J M 2005 Phys. Rev. Lett. 95 098104 [17] Vukov J and Szab {\'o G 2005 Phys. Rev. E 71 036133 [18] Wang W X et al 2006 Phys. Rev. E 74 056113 [19] Tang C L et al 2006 Eur. Phys. J. B 53 411 [20] Hu M B et al 2006 Eur. Phys. J. B 53 273 [21] Wu Z X and Wang Y H 2007 Phys. Rev. E 75041114 [22] Ren J et al 2007 Phys. Rev. E 75 045101(R) [23] Rong Z H et al 2007 Phys. Rev. E 76 027101 [24] Fu F et al 2007 Eur. Phys. J. B 56 367 [25] Huang Z G et al 2007 Eur. Phys. J. B 58 493 [26] Wu Z X et al 2007 Physica A 379 672 [27] Gao K et al 2007 Physica A 380 528 [28] Lieberman E et al 2005 Nature 433 312 [29] Ohtsuki H et al 2006 Nature (London) 441 502 [30] Ohtsuki H et al 2007 Phys. Rev. Lett. 98108106 [31] Chen X J and Wang L 2008 Phys. Rev. E 77017103 [32] Wang W X et al 2008 Phys. Rev. E 77 046109 [33] Nowak M and Sigmund K 1992 Nature 355 250 [34] Nowak M and Sigmund K 1993 Nature 364 56 [35] Newman M E J and Watts D J 1999 Phys. Rev. E 60 7332 [36] Barab{\'asi A L and Albert R 1999 Science 286 509 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|