Chin. Phys. Lett.  2008, Vol. 25 Issue (9): 3496-3499    DOI:
Original Articles |
Effect of Rolling Massage on Particle Moving Behaviour in Blood Vessels
YI Hou-Hui1, FAN Li-Juan1, YANG Xiao-Feng2, CHEN Yan-Yan3
1Department of Physics and Electronic Science, Binzhou University, Shandong 2566002Department of Computer Engineering, Yiwu Industrial and Commercial College, Zhejiang 3220003Shanghai Institute of Applied Physics, Chinese Academy of Sciences, PO Box 800-204, Shanghai 201800
Cite this article:   
YI Hou-Hui, FAN Li-Juan, YANG Xiao-Feng et al  2008 Chin. Phys. Lett. 25 3496-3499
Download: PDF(157KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The rolling massage manipulation is a classic Chinese massage, which is expected to eliminate many diseases. Here the effect of the rolling massage on the particle moving property in the blood vessels under the rolling massage manipulation is studied by the lattice Boltzmann simulation. The simulation results show that the particle moving behaviour depends on the rolling velocity, the distance between particle position and rolling position. The average values, including particle translational velocity and angular velocity, increase as the rolling velocity increases almost linearly. The result is helpful to understand the mechanism of the massage and develop the rolling techniques.
Keywords: 87.19.-j      87.19.Uv      47.11.+j     
Received: 09 June 2008      Published: 29 August 2008
PACS:  87.19.-j (Properties of higher organisms)  
  87.19.Uv  
  47.11.+j  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I9/03496
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YI Hou-Hui
FAN Li-Juan
YANG Xiao-Feng
CHEN Yan-Yan
[1] Fung Y C 1997 Biomechanics Circulation (Berlin:Springer)
[2] Stround J S, Berger S A and Saloner D 2002 J.Biomech. Eng. 124 9
[3] Maria Mercati 1997 The Handbook of Chinese Massage:Tuina Techniques to Awaken Body and Mind (Rochester, VT:Healing Art)
[4] Sun C N 1990 Chinese Massage Therapy (Jinan:Shandong Science and Technology Press)
[5] Xu S X 1997 Proceeding of 9th InternationalConference of Biomedical Engineering (Singapore: SingaporeUniversity Press) p 306
[6] Xu S X, Ji L and Wang Q W 2005 Appl. Math. Mech.Engl. 26 753
[7] McNamara G R and Zanetti G 1988 Phys. Rev. Lett. 61 2332
[8] Qian Y H et al 1992 Europhys. Lett. 17 479
[9] Chen S, Chen H, Martinez D O and Matthaeus W H 1991 Phys. Rev. Lett. 67 3776
[10] Chen H, Chen S and Matthaeus W H 1992 Phys. Rev.A 45 5339
[11] Chen H D et al 2003 Science 301 633
[12] Succi S 2001 The Lattice Boltzmann Equation forFluid Dynamics and Beyond (Oxford: Clarendon)
[13] Ladd A J C 1994 J. Fluid Mech. 271 285
[14] Wan R Z, Fang H P, Lin Z F and Chen S Y 2003 Phys.Rev. E 68 011401
[15] Zhang C Y, Shi J, Tan H L, Liu M R and Kong L J 2004 Chin. Phys. Lett. 21 1108
[16] Zhang C Y, Li H B, Tan H L, Liu M R and Kong L J 2004 Acta Phys. Sin. 54 1982 (in Chinese)
[17] Zhang C Y, Tan H L, Liu M R, Kong L J and Shi J 2005 Chin. Phys. Lett. 22 896
[18] Li H B, Lu X Y, Fang H P and Qian Y H 2004 Phys.Rev. E 70 026701
[19] Fang H P and Chen S Y 2004 Chin. Phys. 13 47
[20] Shan X and Chen H D 1993 Phys. Rev. E 47 1815
[21] Guo Z L and Zhao T S 2003 Phys. Rev. E 68035302
[22] Guo Z L and Zhao T S 2005 Phys. Rev. E 71026701
[23] Swift M R, Orlandini S E, Osborn W R and Yeomans J M 1995 Phys. Rev. Lett. 75 830
[24] Xu A G, Gonnella G and Lamura A 2004 Physica A 331 10
[25] Xu Y S, Wu F M, Chen Y Y and Xu X Z 2003 Chin.Phys. 12 621
[26] Xu Y S, Wu F M, Chen Y Y and Xu X Z 2003 Mod. Phys.Lett. B 19 1351
[27] Xu Y S 2003 Acta Phys. Sin. 52 626 (inChinese)
[28] Xu Y S, Li H B, Fang H P and Huang G X 2004 ActaPhys. Sin. 53 773 (in Chinese)
[29] Wu B Z, Xu Y S, Liu Y and Huang G X 2005 Chin.Phys. 14 2046
[30] Fang H P, Lin Z F and Wang Z W 1998 Phys. Rev. E 57 R25
[31] Fang H P, Wang Z W, Lin Z F and Liu M R 2002 Phys.Rev. E 65 051905
[32] Li H B, Fang H P, Lin Z F, Xu S X and Chen S Y 2004 Phys. Rev. E 69 031919
[33] Yi H H, Xu S X, Qian Y H, Fang H P 2005 Chin. Phys.Lett. 22 3210
[34] Kang X Y, Liu D H, Zhou J and Jin Y J 2005 Chin.Phys. Lett. 22 2873
[35] Lu X Y, Yi H H, Chen J Y, Fang H P 2006 Chin. Phys.Lett. 23 738
[36] Li H B, Yi H H, Shan X W, Fang H P 2008 Europhys.Lett. 81 54002
[37] Migliorini C et al 2002 Biophys. J. 83 1834
[38] Sun C H, Migliorini C and Munn L L 2003 Biophys.J. 85 208
[39] Segr\'e G and Silberberg A 1961 Nature 189209
[40] Segr\'e G and Silberberg A 1962 J. Fluid Mech. 14 115
[41] Zou Q and He X 1997 Phys. Fluids. 9 1591
[42] Allen M P and Tildesley D J 1987 ComputerSimulation of Liquid (Oxford: Clarendon)
Related articles from Frontiers Journals
[1] SHI Lei**,XIONG Wei,GAO Shu-Sheng. The Effect of Gas Leaks on Underground Gas Storage Performance During Development and Operation[J]. Chin. Phys. Lett., 2012, 29(4): 3496-3499
[2] XU Wan-Hai**, DU Jie, YU Jian-Xing, LI Jing-Cheng . Wake Oscillator Model Proposed for the Stream-Wise Vortex-Induced Vibration of a Circular Cylinder in the Second Excitation Region[J]. Chin. Phys. Lett., 2011, 28(12): 3496-3499
[3] JI Yu-Pin, KANG Xiu-Ying, LIU Da-He. Simulation of Non-Newtonian Blood Flow by Lattice Boltzman Method[J]. Chin. Phys. Lett., 2010, 27(9): 3496-3499
[4] JI Yu-Pin, KANG Xiu-Ying, LIU Da-He. The Blood Flow at Arterial Bifurcations Simulated by the Lattice Boltzmann Method[J]. Chin. Phys. Lett., 2009, 26(7): 3496-3499
[5] DAI Zheng-De, XIAN Da-Quan, LI Dong-Long. Homoclinic Breather-Wave with Convective Effect for the (1+1)-Dimensional Boussinesq Equation[J]. Chin. Phys. Lett., 2009, 26(4): 3496-3499
[6] YI Hou-Hui, FAN Li-Juan, YANG Xiao-Feng, LI Hua-Bing. Lattice Boltzmann Simulations of Particle-Particle Interaction in Steady Poiseuille Flow[J]. Chin. Phys. Lett., 2009, 26(4): 3496-3499
[7] LAI Hui-Lin, MA Chang-Feng,. An Implicit Scheme of Lattice Boltzmann Method for Sine-Gordon Equation[J]. Chin. Phys. Lett., 2008, 25(6): 3496-3499
[8] DAI Zheng-De, LIU Zhen-Jiang, LI Dong-Long. Exact Periodic Solitary-Wave Solution for KdV Equation[J]. Chin. Phys. Lett., 2008, 25(5): 3496-3499
[9] LI Dong-Long, DAI Zheng-De, GUO Yan-Feng. Periodic Homoclinic Wave of (1+1)-Dimensional Long--Short Wave Equation[J]. Chin. Phys. Lett., 2008, 25(12): 3496-3499
[10] QI Mei-Lan, HE Hong-Liang, YAN Shi-Lin. Effect of Temperature on the Void Growth in Pure Aluminium at High Strain-Rate Loading[J]. Chin. Phys. Lett., 2007, 24(8): 3496-3499
[11] LI Hua-Bing, ZHANG Chao-Ying, LU Xiao-Yang, FANG Hai-Ping. An Effective Method on Two-Dimensional Lattice Boltzmann Simulations with Moving Boundaries[J]. Chin. Phys. Lett., 2007, 24(12): 3496-3499
[12] MA Chang-Feng, , SHI Bao-Chang. Lattice Bhatnagar--Gross--Krook Simulations of Hydromagnetic Double-Diffusive Convection in a Rectangular Enclosure with Opposing Temperature and Concentration Gradients[J]. Chin. Phys. Lett., 2006, 23(7): 3496-3499
[13] LU Xiao-Yang, YI Hou-Hui, CHEN Ji-Yao, FANG Hai-Ping. Lattice BGK Simulations of the Blood Flow in Elastic Vessels[J]. Chin. Phys. Lett., 2006, 23(3): 3496-3499
[14] CHEN Sheng, LIU Zhao-Hui, HE Zhu, ZHANG Chao, TIAN Zhi-Wei, SHI Bao-Chang, ZHENG Chu-Guang. A Novel Lattice Boltzmann Model For Reactive Flows with Fast Chemistry[J]. Chin. Phys. Lett., 2006, 23(3): 3496-3499
[15] KANG Xiu-Ying, LIU Da-He, ZHOU Jing, JIN Yong-Juan. Simulating High Reynolds Number Flow by Lattice Boltzmann Method[J]. Chin. Phys. Lett., 2005, 22(6): 3496-3499
Viewed
Full text


Abstract