Chin. Phys. Lett.  2008, Vol. 25 Issue (9): 3493-3495    DOI:
Original Articles |
Leader--Follower Consensus Problems of Multi-agent Systems with Noise Perturbation and Time Delays
SUN Yong-Zheng1,2, RUAN Jiong2
1School of Sciences, China University of Mining and Technology, Xuzhou 2210082School of Mathematical Sciences, Fudan University, Shanghai 200433
Cite this article:   
SUN Yong-Zheng, RUAN Jiong 2008 Chin. Phys. Lett. 25 3493-3495
Download: PDF(139KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In light of the stability theory for stochastic differential delay equations, the leader--followerconsensus problem with noise perturbation and communication time delays is investigated. Communication among agents is modelled as a weighted directed graph and the weights are stochastically perturbed with white noise. It is analytically proven that the consensus could be achieved almost surely with the perturbation of noise and communication time delays. Furthermore, numerical examples are provided to illustrate the effectiveness of the theoretical results
Keywords: 87.18.Ed      87.10.+e      05.40.Ca      05.45.Xt     
Received: 05 June 2008      Published: 29 August 2008
PACS:  87.18.Ed (Cell aggregation)  
  87.10.+e  
  05.40.Ca (Noise)  
  05.45.Xt (Synchronization; coupled oscillators)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I9/03493
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SUN Yong-Zheng
RUAN Jiong
[1] Vicsek T, Czirok A, Jacob E B, Cohern I and Shochet O 1995 Phys. Rev. Lett. 75 1226
[2]Toner J and Tu Y 1998 Phys. Rev. E 58 4828
[3]Czirok A and Vicsek T 2000 Physica A 281 17
[4]Olfati-Saber R and Murray R M 2004 IEEE Trans. Autom.Control 49 1520
[5] Olfati-Saber R 2006 IEEE Trans. Autom. Control 51 401
[6]Xiao F and Wang L 2006 Physica A 370 364
[7]Wu Z, Guan Z and Wu X 2007 Physica A 379 681
[8] Guan Z and Wu Z 2008 Physica A 387 314
[9]Angeli D and Bliman P A 2006 Mathematics of ControlSignals and systems 18 293
[10]Xiao F and Wang L 2006 Int. J. Control 791277
[11]Hu J P and Hong Y G 2007 Physica A 374 852
[12] Moreau L 2005 IEEE Trans. Automat. Control 50169
[13]Shi H, Wang L and Chu T G 2006 Physica D 23151
[14]Mu S, Chu T and Wang L 2005 Physica A 351 211
[15] Lin P and Jia Y 2008 Physica A 387 303
[16] Olfati-Saber R, Fax J A and Murray R M 2007 Proceedings of the IEEE 95 215
[17]Wang Q Y, Duan Z S and Lu Q S 2007 Chin. Phys. Lett. 24 2759
[18]Bai Z W 2008 Chin. Phys. Lett. 25 1213
[19] Mao X R 1996 IEEE Trans. Autom. Control 41442
[20]Horn R A and Johnson C R 1985 Matrix Analysis (NewYork: Cambridge University Press) chap 4 p 472
Related articles from Frontiers Journals
[1] HE Gui-Tian, LUO Mao-Kang. Weak Signal Frequency Detection Based on a Fractional-Order Bistable System[J]. Chin. Phys. Lett., 2012, 29(6): 3493-3495
[2] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 3493-3495
[3] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 3493-3495
[4] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 3493-3495
[5] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 3493-3495
[6] KADIR Abdurahman, WANG Xing-Yuan**, ZHAO Yu-Zhang . Generalized Synchronization of Diverse Structure Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(9): 3493-3495
[7] JIANG Hui-Jun, WU Hao, HOU Zhong-Huai** . Explosive Synchronization and Emergence of Assortativity on Adaptive Networks[J]. Chin. Phys. Lett., 2011, 28(5): 3493-3495
[8] WANG Xing-Yuan**, REN Xiao-Li . Chaotic Synchronization of Two Electrical Coupled Neurons with Unknown Parameters Based on Adaptive Control[J]. Chin. Phys. Lett., 2011, 28(5): 3493-3495
[9] GUO Rong-Wei . Simultaneous Synchronization and Anti-Synchronization of Two Identical New 4D Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(4): 3493-3495
[10] LU Hong**, BAO Jing-Dong . Time Evolution of a Harmonic Chain with Fixed Boundary Conditions[J]. Chin. Phys. Lett., 2011, 28(4): 3493-3495
[11] SONG Yan-Li . Frequency Effect of Harmonic Noise on the FitzHugh–Nagumo Neuron Model[J]. Chin. Phys. Lett., 2011, 28(12): 3493-3495
[12] GUO Xiao-Yong, *, LI Jun-Min . Projective Synchronization of Complex Dynamical Networks with Time-Varying Coupling Strength via Hybrid Feedback Control[J]. Chin. Phys. Lett., 2011, 28(12): 3493-3495
[13] FENG Cun-Fang**, WANG Ying-Hai . Projective Synchronization in Modulated Time-Delayed Chaotic Systems Using an Active Control Approach[J]. Chin. Phys. Lett., 2011, 28(12): 3493-3495
[14] WEI Du-Qu**, LUO Xiao-Shu, CHEN Hong-Bin, ZHANG Bo . Random Long-Range Interaction Induced Synchronization in Coupled Networks of Inertial Ratchets[J]. Chin. Phys. Lett., 2011, 28(11): 3493-3495
[15] ZHANG Yan-Ping, HE Ji-Zhou**, XIAO Yu-Ling . An Approach to Enhance the Efficiency of a Brownian Heat Engine[J]. Chin. Phys. Lett., 2011, 28(10): 3493-3495
Viewed
Full text


Abstract