1State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 2University of Chinese Academy of Sciences, Beijing 100049 3Shanghai Engineering Center for Microsatellites, Chinese Academy of Sciences, Shanghai 201203
Abstract:A heavy-ion irradiation experiment is studied in digital storage cells with different design approaches in 130 nm CMOS bulk Si and silicon-on-insulator (SOI) technologies. The effectiveness of linear energy transfer (LET) with a tilted ion beam at the 130 nm technology node is obtained. Tests of tilted angles $\theta =0^{\circ}$, 30$^{\circ}$ and 60$^{\circ}$ with respect to the normal direction are performed under heavy-ion Kr with certain power whose LET is about 40 MeVcm$^{2}$/mg at normal incidence. Error numbers in D flip-flop chains are used to determine their upset sensitivity at different incidence angles. It is indicated that the effective LETs for SOI and bulk Si are not exactly in inverse proportion to $\cos \theta$, furthermore the effective LET for SOI is more closely in inverse proportion to $\cos \theta$ compared to bulk Si, which are also the well known behavior. It is interesting that, if we design the sample in the dual interlocked storage cell approach, the effective LET in bulk Si will look like inversely proportional to $\cos \theta$ very well, which is also specifically explained.