Molecular Beam Epitaxy of Zero Lattice-Mismatch InAs/GaSb Type-II Superlattice
Hai-Long Yu, Hao-Yue Wu, Hai-Jun Zhu, Guo-Feng Song, Yun Xu**
Nano-Optoelectronics Laboratory, Institute of Semiconductors, Chinese Academy of Sciences, BeiJing 100083
Abstract :Type-II InAs/GaSb superlattices made of 13 InAs monolayers (MLs) and 7 GaSb MLs are grown on GaSb substrates by solid source molecular beam epitaxy. To obtain lattice-matched structures, thin InSb layers are inserted between InAs and GaSb layers. We complete a series of experiments to investigate the influence of the InSb deposition time, V/III beam-equivalent pressure ratio and interruption time between each layer, and then characterize the superlattice (SL) structures with high-resolution x-ray diffraction and atomic force microscopy. The optimized growth parameters are applied to grow the 100-period SL structure, resulting in the full-width half-maximum of 29.55 arcsec for the first SL satellite peak and zero lattice-mismatch between the zero-order SL peak and the GaSb substrate peak.
收稿日期: 2016-08-08
出版日期: 2016-12-29
:
81.05.Ea
(III-V semiconductors)
81.10.Pq
(Growth in vacuum)
74.78.Fk
(Multilayers, superlattices, heterostructures)
81.15.-z
(Methods of deposition of films and coatings; film growth and epitaxy)
[1] Simth D L and Mailhiot C 1987 J. Appl. Phys. 62 2545 [2] Nguyen B M, Hoffman D, Wei Y et al 2007 Appl. Phys. Lett. 90 231108 [3] Wei Y, Hood A, Yau H, Yazdanpanah V et al 2005 Appl. Phys. Lett. 86 091109 [4] Plis E, Rodriguez J B, Kim H S, Bishop G et al 2007 Appl. Phys. Lett. 91 133512 [5] Walther M, Schmitz J, Rehm R, Kopta S et al 2005 J. Cryst. Growth 278 156 [6] Chen J X, Zhou Y, Xu Z C et al 2013 J. Cryst. Growth 378 596 [7] Rhiger D R, Kvaas R E, Harris S F, Bornfreund R E et al 2007 Proc. SPIE 6542 654202 [8] Chen J X, Xu Q Q, Zhou Y et al 2011 Nanoscale Res. Lett. 6 635 [9] Satpati B, Rodriguez J B, Trampert A et al 2007 J. Cryst. Growth 301 889 [10] Khoshakhlagh A, Plis E, Myers S and Sharma Y D 2009 J. Cryst. Growth 311 1901 [11] Haugan H J, Brown G L and Grazulis L 2011 J. Vac. Sci. Technol. B 29 03C101 [12] Arikan B, Korkmaz M, Aslan B and Serincan U 2015 Thin Solid Films 589 813 [13] Rodriquez J B, Christol P, Cerutti L and Chevrier F 2005 J. Cryst. Growth 274 6 [14] Haugan H J, Grazulis L, Brown G J, Mahalingam K et al 2004 J. Cryst. Growth 261 471 [15] Plis E, Annamalai S and Posani K T 2006 J. Appl. Phys. 100 014510 [16] Zhang Y H, Ma W Q, Cao Y L and Huang J L 2011 IEEE J. Quantum Electron. 47 1475 [17] Arikan B, Korkmaz G and Suyolcu Y E 2013 Thin Solid Films 548 288 [18] Tahraoui A, Tomasini P, Lassabatere L et al 2000 Appl. Surf. Sci. 162 425 [19] Kaspi R, Steinshnider J, M Weimer et al 2001 J. Cryst. Growth 225 544 [20] Wen L, Gao F L, Zhang X N, Zhang S G et al 2014 J. Appl. Phys. 116 193508 [21] Gao F L, Wen L, Zhang S G, Li J L et al 2015 Thin Solid Films 597 25 [22] Bulent A and Melih K 2016 Appl. Surf. Sci. 362 244
[1]
. [J]. 中国物理快报, 2022, 39(5): 58101-058101.
[2]
. [J]. 中国物理快报, 2021, 38(6): 68101-.
[3]
. [J]. 中国物理快报, 0, (): 68503-.
[4]
. [J]. 中国物理快报, 2020, 37(6): 68503-.
[5]
. [J]. 中国物理快报, 2020, 37(5): 54204-.
[6]
. [J]. 中国物理快报, 2020, 37(3): 38102-.
[7]
. [J]. 中国物理快报, 2020, 37(3): 38502-.
[8]
. [J]. 中国物理快报, 2018, 35(9): 98101-.
[9]
. [J]. 中国物理快报, 2018, 35(7): 78801-.
[10]
. [J]. 中国物理快报, 2018, 35(5): 57801-.
[11]
. [J]. 中国物理快报, 2018, 35(3): 38103-.
[12]
. [J]. 中国物理快报, 2018, 35(2): 26104-.
[13]
. [J]. 中国物理快报, 2017, 34(5): 58101-.
[14]
. [J]. 中国物理快报, 2017, 34(4): 48101-048101.
[15]
. [J]. 中国物理快报, 2017, 34(1): 18101-018101.