1State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, P. O. Box 912, Beijing 100083, China 2Center of Materials Science and Optoelectronics Engineering, and CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China 3State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China 4Beijing Academy of Quantum Information Sciences, Beijing 100193, China 5Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 6Frontier Science Center for Quantum Information, Beijing 100084, China
Abstract:We demonstrate the in situ growth of ultra-thin InAs nanowires with an epitaxial Al film by molecular-beam epitaxy. Our InAs nanowire diameter ($\sim $30 nm) is much thinner than before ($\sim $100 nm). The ultra-thin InAs nanowires are pure phase crystals for various different growth directions. Transmission electron microscopy confirms an atomically abrupt and uniform interface between the Al shell and the InAs wire. Quantum transport study on these devices resolves a hard induced superconducting gap and 2$e$-periodic Coulomb blockade at zero magnetic field, a necessary step for future Majorana experiments. By reducing wire diameter, our work presents a promising route for reaching fewer sub-band regime in Majorana nanowire devices.
Churchill H O H, Fatemi V, Grove-Rasmussen K, Deng M T, Caroff P, Xu H Q, and Marcus C M 2013 Phys. Rev. B87 241401
[15]
Chang W, Albrecht S M, Jespersen T S, Kuemmeth F, Krogstrup P, Nygård J, and Marcus C M 2015 Nat. Nanotechnol.10 232
[16]
Heedt S, Quintero-Pérez M, Borsoi F, Fursina A, van Loo N, Mazur G P, Nowak M P, Ammerlaan M, Li K, Korneychuk S, Shen J, van de An Y P M, Badawy G, Gazibegovic S, de Jong N, Aseev P, van Hoogdalem K, Bakkers E P A M, and Kouwenhoven L P 2021 Nat. Commun.12 4914
[17]
Pendharkar M, Zhang B, Wu H, Zarassi A, Zhang P, Dempsey C P, Lee J S, Harrington S D, Badawy G, Gazibegovic S, Op H V R L M, Rossi M, Jung J, Chen A H, Verheijen M A, Hocevar M, Bakkers E P A M, Palmstrøm C J, and Frolov S M 2021 Science372 508
[18]
Kanne T, Marnauza M, Olsteins D, Carrad D J, Sestoft J E, de Bruijckere J, Zeng L, Johnson E, Olsson E, Grove-Rasmussen K, and Nygård J 2021 Nat. Nanotechnol.16 776
Sestoft J E, Kanne T, Gejl A N, von Soosten M, Yodh J S, Sherman D, Tarasinski B, Wimmer M, Johnson E, Deng M T, Nygå R J, Jespersen T S, Marcus C M, and Krogstrup P 2018 Phys. Rev. Mater.2 044202
[26]
Khan S A, Lampadaris C, Cui A, Stampfer L, Liu Y, Pauka S J, Cachaza M E, Fiordaliso E M, Kang J H, Korneychuk S, Mutas T, Sestoft J E, Krizek F, Tanta R, Cassidy M C, Jespersen T S, and Krogstrup P 2020 ACS Nano14 14605
[27]
Vaitiekėnas S, Whiticar A M, Deng M T, Krizek F, Sestoft J E, Palmstrøm C J, Martí-Sánchez S, Arbiol J, Krogstrup P, Casparis L, and Marcus C M 2018 Phys. Rev. Lett.121 147701
[28]
Lee J S, Choi S, Pendharkar M, Pennachio D J, Markman B, Seas M, Koelling S, Verheijen M A, Casparis L, Petersson K D, Petkovic I, Schaller V, Rodwell M J W, Marcus C M, Krogstrup P, Kouwenhoven L P, Bakkers E P A M, and Palmstrøm C J 2019 Phys. Rev. Mater.3 084606
Song H D, Zhang Z T, Pan D, Liu D H, Wang Z Y, Cao Z Y, Liu L, Wen L J, Liao D Y, Zhuo R, Liu D, Shang R N, Zhao J H, and Zhang H 2021 arXiv:2107.08282 [cond-mat.mes-hall]
Gül Ö, Zhang H, de Vries F K, van Veen J, Zuo K, Mourik V, Conesa-Boj S, Nowak M P, van Woerkom D J, Quintero-Pérez M, Cassidy M C, Geresdi A, Koelling S, Car D, Plissard S R, Bakkers E P A M, and Kouwenhoven L P 2017 Nano Lett.17 2690
[54]
Zhang H, Gül Ö, Conesa-Boj S, Nowak M P, Wimmer M, Zuo K, Mourik V, de Vries F K, van Veen J, de Moor M W, Bommer J D S, van Woerkom D J, Car D, Plissard S R, Bakkers E P A M, Quintero-Pérez M, Cassidy M C, Koelling S, Goswami S, Watanabe K, Taniguchi T, and Kouwenhoven L P 2017 Nat. Commun.8 16025
[55]
de Moor M W A, Bommer J D S, Xu D, Winkler G W, Antipov A E, Bargerbos A, Wang G, van Loo N, Op H V R L M, Gazibegovic S, Car D, Logan J A, Pendharkar M, Lee J S, Bakkers E P A M, Palmstrøm C J, Lutchyn R M, Kouwenhoven L P, and Zhang H 2018 New J. Phys.20 103049
[56]
Deng M T, Vaitiekėnas S, Hansen E B, Danon J, Leijnse M, Flensberg K, Nygård J, Krogstrup P, and Marcus C M 2016 Science354 1557
[57]
Gül Ö, Zhang H, Bommer J D S, de Moor M W A, Car D, Plissard S R, Bakkers E P A M, Geresdi A, Watanabe K, Taniguchi T, and Kouwenhoven L P 2018 Nat. Nanotechnol.13 192
Nichele F, Drachmann A C C, Whiticar A M, O'Farrell E C T, Suominen H J, Fornieri A, Wang T, Gardner G C, Thomas C, Hatke A T, Krogstrup P, Manfra M J, Flensberg K, and Marcus C M 2017 Phys. Rev. Lett.119 136803
Zhang H, de Moor M W A, Bommer J D S, Xu D, Wang G Z, van Loo N, Liu C X, Gazibegovic S, Logan J A, Car D, Op H V R L M, van Veldhoven P J, Koelling S, Verheijen M A, Pendharkar M, Pennachio D J, Shojaei B, Lee J S, Palmstrøm C J, Bakkers E P A M, Das S S, and Kouwenhoven L P 2021 arXiv:2101.11456 [cond-mat.mes-hall]