Growth of InAlGaN Quaternary Alloys by Pulsed Metalorganic Chemical Vapor Deposition
Ru-Dai Quan, Jin-Cheng Zhang** , Sheng-Rui Xu, Jun-Shuai Xue, Yi Zhao, Jing Ning, Zhi-Yu Lin, Ze-Yang Ren, Yue Hao
Key Laboratory of Wide Band-Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071
Abstract :Epitaxial growth of InAlGaN/GaN structures are performed on the $c$-plane sapphire by pulsed metal organic chemical vapor deposition with different triethylgallium (TEGa) flows in the growth process of InAlGaN quaternary alloys. X-ray photoelectron spectroscopy results show that the Al/In ratio of the samples increases as the TEGa flows increase in the InAlGaN quaternary growth process. High-resolution x-ray diffraction results show that the crystal quality is improved with increasing TEGa flows. Morphology of the InAlGaN/GaN heterostructures is characterized by an atomic force microscopy, and the growth mode of the InAlGaN quaternary shows a 2D island growth mode. The minimum surface roughness is 0.20 nm with the TEGa flows equaling to 3.6 $\mu$mol/min in rms. Hall effect measurement results show that the highest electron mobility $\mu$ is 1005.49 cm$^{2}$/Vs and the maximal two-dimensional electron gas is $1.63\times10^{13}$ cm$^{-2}$.
收稿日期: 2015-12-22
出版日期: 2016-04-29
:
81.05.Bx
(Metals, semimetals, and alloys)
81.05.Ea
(III-V semiconductors)
81.15.Gh
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
81.15.Kk
(Vapor phase epitaxy; growth from vapor phase)
引用本文:
. [J]. 中国物理快报, 2016, 33(04): 48101-048101.
Ru-Dai Quan, Jin-Cheng Zhang, Sheng-Rui Xu, Jun-Shuai Xue, Yi Zhao, Jing Ning, Zhi-Yu Lin, Ze-Yang Ren, Yue Hao. Growth of InAlGaN Quaternary Alloys by Pulsed Metalorganic Chemical Vapor Deposition. Chin. Phys. Lett., 2016, 33(04): 48101-048101.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/33/4/048101
或
https://cpl.iphy.ac.cn/CN/Y2016/V33/I04/48101
[1] Steven C B, Kiki I, Jason A R, Walter K, Doewon P, Harry B D, Daniel D K, Alma E W and Richard L H 2001 IEEE Trans. Electron Devices 48 465 [2] Wu Y F, Ibbetson J P, Parikh P, Keller B P, Mishra U K and Kapolnek D 2001 IEEE Trans. Electron Devices 48 586 [3] Wu Y F, Saxler A, Moore M, Smith R P, Sheppard S, Chavarkar P M, Wisleder T, Mishra U K and Parikh P 2004 IEEE Electron Device Lett. 25 117 [4] Lv L, Zhang J C, Xue J S, Ma X H, Zhang W, Bi Z W, Zhang Y and Hao Y 2012 Chin. Phys. B 21 037104 [5] Zhao S L, Mi M H, Hou B, Luo J, Wang Y, Dai Y, Zhang J C, Ma X H and Hao Y 2014 Chin. Phys. B 23 107303 [6] Sun W W, Zheng X F, Fan S, Wang C, Du M, Zhang K, Chen W W, Cao Y R, Mao W, Ma X H, Zhang J C and Hao Y 2015 Chin. Phys. B 24 017303 [7] Wang R, Li G, Karbasian G, Guo J, Song B, Yue Y, Hu Z, Laboutin O, Cao Y, Johnson W, Snider G, Fay P, Jena D and Xing H G 2013 IEEE Electron Device Lett. 34 378 [8] Lecourt F, Agboton A, Ketteniss N, Behmenburg H, Defrance N, Hoel V, Kalisch H, Vescan A, Heuken M and De Jaeger J C 2013 IEEE Electron Device Lett. 34 978 [9] Ketteniss N, Khoshroo L R, Eickelkamp M, Heuken M, Kalisch H, Jansen R H and Vescan A 2010 Semicond. Sci. Technol. 25 075013 [10] Lim T, Aidam R, Waltereit P, Henkel T, Quay R, Lozar R, Maier T, Kirste L and Ambacher O 2010 IEEE Electron Device Lett. 31 671 [11] Chen C H, Huang L Y and Chen Y F 2002 Appl. Phys. Lett. 80 1397 [12] Hahn H, Reuters B, Wille A, Ketteniss N, Benkhelifa F, Ambacher O, Kalisch H and Vescan A 2010 Semicond. Sci. Technol. 25 055004 [13] Reuters B, Wille A, Ketteniss N, Hahn H, Holl?nde B, Heuken M, Kalisch H and Vescan A 2013 J. Electron. Mater. 42 826 [14] Kyono T, Hirayama H, Akita K, Nakamura T and Ishibashi K 2005 J. Appl. Phys. 98 113514 [15] Yu T J, Pan Y B, Yang Z J, Xu K and Zhang G Y 2007 J. Cryst. Growth 298 211 [16] Pan Y B, Yu T J, Yang Z J, Wang H, Qin Z X, Hua X D, Wang K, Yao S D and Zhang G Y 2007 J. Cryst. Growth 298 341 [17] Shang J Z, Zhang B P, Wu C M, Cai L E, Zhang J Y, Yu J Z and Wang Q M 2008 Appl. Surf. Sci. 255 3350 [18] Yu S F, Chang S J, Lin R M, LinY H, Lu Y C, Chang S P and Chiou Y Z 2010 J. Cryst. Growth 312 1920 [19] Gonschorek M, Carlin J F, Feltin E, Py M A and Grandjean N 2006 Appl. Phys. Lett. 89 062106 [20] Xue J S, Zhang J C, Zhang W, Li L, Meng F N, Lu M, Ning J and Hao Y 2012 J. Cryst. Growth 343 110 [21] Reuters B, Wille A, Ketteniss N, Hahn H, Holl?nder B, Heuken M, Kalisch H and Vescan A 2013 J. Electron. Mater. 42 826 [22] Ahla J P, Hertkorna J, Kocha H, Gallera B, Michela B, Bindera M and Holl?nder B 2014 J. Cryst. Growth 398 33 [23] Aggerstam T, Lourdudoss S, Radamson H H, Sjodin M, Lorenzini P and Look D C 2006 Thin Solid Films 515 705
[1]
. [J]. 中国物理快报, 2019, 36(1): 17501-.
[2]
. [J]. 中国物理快报, 2018, 35(1): 18101-.
[3]
. [J]. 中国物理快报, 2016, 33(10): 108104-108104.
[4]
. [J]. 中国物理快报, 2016, 33(10): 108102-108102.
[5]
. [J]. 中国物理快报, 2016, 33(08): 88102-088102.
[6]
. [J]. 中国物理快报, 2016, 33(02): 26201-026201.
[7]
. [J]. 中国物理快报, 2013, 30(6): 66401-066401.
[8]
. [J]. Chin. Phys. Lett., 2013, 30(3): 36501-036501.
[9]
. [J]. 中国物理快报, 2012, 29(8): 88104-088104.
[10]
YANG Tao, CHEN Zheng, ZHANG Jing, DONG Wei-Ping, WU Lin. Effect of Grain Boundary on Spinodal Decomposition Using the Phase Field Crystal Method [J]. 中国物理快报, 2012, 29(7): 78103-078103.
[11]
YAN Na;DAI Fu-Ping;WANG Wei-Li;WEI Bing-Bo**
. Crystal Growth in Al72.9 Ge27.1 Alloy Melt under Acoustic Levitation Conditions [J]. 中国物理快报, 2011, 28(7): 78101-078101.
[12]
ZHAI Feng-Xiao;ZUO Fang-Yuan;HUANG Huan;WANG Yang;LAI Tian-Shu;WU Yi-Qun;GAN Fu-Xi. Optical Switch Formation in Antimony Super-Resolution Mask Layers Induced by Picosecond Laser Pulses [J]. 中国物理快报, 2010, 27(1): 14209-014209.
[13]
ZHU Zun-Lue;FU Hong-Zhi;SUN Jin-Feng;LIU Yu-Fang;SHI De-Heng;XU Guo-Liang. First-Principles Calculations of Elastic and Thermal Properties of Molybdenum Disilicide [J]. 中国物理快报, 2009, 26(8): 86203-086203.
[14]
ZHANG Li;HE Qing;JIANG Wei-Long;LI Chang-Jian;SUN Yun. Cu(In, Ga)Se2 Thin Films on Flexible Polyimide Sheet: Structural and Electrical Properties versus Composition [J]. 中国物理快报, 2009, 26(2): 26801-026801.
[15]
FAN Zhen-Jun;PAN Feng;ZHANG Dian-Lin. Growth of High-Quality Decagonal Al-Cu-Co Quasicrystals from Ternary Melt [J]. 中国物理快报, 2009, 26(2): 26104-026104.