摘要The nonequilibrium solidification of liquid Al72.9Ge27.1 hypoeutectic alloy is accomplished by using single−axis acoustic levitation. A maximum undercooling of 112 K (0.16TL) is obtained for the alloy melt at a cooling rate of 50 K/s. The primary (Al) phase displays a morphological transition from coarse dendrite under a normal conditions to equiaxed grain under acoustic levitation. In the (Al)+(Ge) eutectic, the (Ge) phase exhibits a conspicuous branched growth morphology. Both the primary (Al) dendrites and (Al)+(Ge) eutectics are well refined and the solute content of the primary (Al) phase is extended under acoustic levitation. The calculated and experimental results indicate that the solute trapping effect becomes more intensive with the enhancement of bulk undercooling.
Abstract:The nonequilibrium solidification of liquid Al72.9Ge27.1 hypoeutectic alloy is accomplished by using single−axis acoustic levitation. A maximum undercooling of 112 K (0.16TL) is obtained for the alloy melt at a cooling rate of 50 K/s. The primary (Al) phase displays a morphological transition from coarse dendrite under a normal conditions to equiaxed grain under acoustic levitation. In the (Al)+(Ge) eutectic, the (Ge) phase exhibits a conspicuous branched growth morphology. Both the primary (Al) dendrites and (Al)+(Ge) eutectics are well refined and the solute content of the primary (Al) phase is extended under acoustic levitation. The calculated and experimental results indicate that the solute trapping effect becomes more intensive with the enhancement of bulk undercooling.
[1] Tuckermann R et al 2002 Chem. Phys. Lett. 363 249
[2] Lü Y J, et al 2005 Appl. Phys. Lett. 87 184107
[3] Weber J K R et al 2009 Rev. Sci. Instrum. 80 083904
[4] Yan N et al 2011 Chin. Sci. Bull. 56 912
[5] Hong Z Y, et al 2010 Chin. Phys. Lett. 27 014301
[6] Asta M et al 2009 Acta Mater. 57 941
[7] Becker C A et al 2007 Phys. Rev. Lett. 98 125701
[8] Dragnevski K, et al 2002 Phys. Rev. Lett. 89 215502
[9] Drolet F et al 2000 Phys. Rev. E 61 6705
[10] Akamatsu S, et al 2004 Phys. Rev. Lett. 93 175701
[11] Liu X R, Cao C D and Wei B 2003 Chin. Phys. 12 1266
[12] He D W et al 1997 Appl. Phys. Lett. 71 3811
[13] Okamoto H 1993 J. Phase Equilibria 14 118
[14] Li S P et al 1995 Acta Phys. Sin. 44 233 (in Chinese)
[15] Lipton J, Kurz W and Trivedi R 1987 Acta Metall. 35 957
[16] Trivedi R, Lipton J and Kurz W 1987 Acta Metall. 35 965
[17] Gale W F and Totememier T C 2004 Smithells Metals Reference Book 8nd edn (London: Butterworth) chap 14 pp 1–14
[18] Hickling R 1994 Phys. Rev. Lett. 73 2853