摘要Liquid Fe-Cu-Sn ternary alloys with lower Sn contents are usually assumed to display a peritectic-type solidification process under equilibrium condition. Here we show that liquid Fe47.5Cu47.5Sn5 ternary alloy exhibits a metastable immiscibility gap in the undercooling range of 51-329 K (0.19TL). Macroscopic phase separation occurs once undercooling exceeds 196 K and causes the formation of a floating Fe-rich zone and a descending Cu-rich zone. Solute redistribution induces the depletion of Sn concentration in the Fe-rich zone and its enrichment in the Cu-rich zone. The primary Fe phase grows dendritically and its growth velocity increases with undercooling until the appearance of notable macrosegregation, but will decrease if undercooling further increases beyond 236 K. The microsegregation degrees of both solutes in Fe and Cu phases vary only slightly with undercooling.
Abstract:Liquid Fe-Cu-Sn ternary alloys with lower Sn contents are usually assumed to display a peritectic-type solidification process under equilibrium condition. Here we show that liquid Fe47.5Cu47.5Sn5 ternary alloy exhibits a metastable immiscibility gap in the undercooling range of 51-329 K (0.19TL). Macroscopic phase separation occurs once undercooling exceeds 196 K and causes the formation of a floating Fe-rich zone and a descending Cu-rich zone. Solute redistribution induces the depletion of Sn concentration in the Fe-rich zone and its enrichment in the Cu-rich zone. The primary Fe phase grows dendritically and its growth velocity increases with undercooling until the appearance of notable macrosegregation, but will decrease if undercooling further increases beyond 236 K. The microsegregation degrees of both solutes in Fe and Cu phases vary only slightly with undercooling.
[1] Tostmann H et al 2000 Phys. Rev. Lett. 84 4385 [2] Kaban I G and Hoyer W 2008 Phys. Rev. B 77 125426 [3] Tai K P et al 2006 Appl. Phys. Lett. 88 184103 [4] Banerjee R et al 2007 Appl. Phys. Lett. 90 021904 [5] Luo B C et al 2009 J. Appl. Phys. 106 053523 [6] Sicilia A et al 2009 Phys. Rev. E 80 031121 [7] Li H L and Zhao J Z 2008 Appl. Phys. Lett. 92 241902 [8] Tafa K, Puri S and Kumar D 2001 Phys. Rev. E 64 056139 [9] Yuan Y Q et al 2004 Chin. Phys. Lett. 21 709 [10] Yang G W et al 2000 J. Appl. Phys. 87 7232 [11] Qin T et al 2007 Sci. Chin. G 37 409 [12] Huang L J and Liu B X 1990 Appl. Phys. Lett. 57 1401 [13] Tanaka H et al 2005 Phys. Rev. Lett. 95 078103 [14] Thakur S et al 2009 Phys. Rev. E 80 011708 [15] Lu X Y et al 2001 Mater. Sci. Eng. A 313 198 [16] Liu J M et al 1994 Chin. Phys. Lett. 11 634 [17] Chang Y A 1979 Int. Copper Research Association 1979 498 [18] Zhou H Y and Zheng J X 1987 Acta Metall. Sin. 23 B39 [19]Miettinen J 2009 Computer Coupling of Phase Diagrams and Thermochemistry 32 500 [20] Qin H Y et al 2009 Chin. Phys. Lett. 26 118102