1Thermoelectrics Research Center and Department of Physics, Faculty of Science and Technology, Sakon Nakhon Rajabhat University, 680 Nithayo Rd., Sakon Nakhon, 47000, Thailand2National Metal and Materials Technology Center, 114 Thailand SciencePark, Paholyothin Rd., Klong 1, Klong Luang, Pathumthani, 12120, Thailand3Integrated Nanotechnology Research Center and Department of Physics, Faculty of Science, Khon Kaen University, 123 Mitrapab Rd., Khon Kaen, 40002, Thailand
Molecular Dynamics Simulation of Strontium Titanate
1Thermoelectrics Research Center and Department of Physics, Faculty of Science and Technology, Sakon Nakhon Rajabhat University, 680 Nithayo Rd., Sakon Nakhon, 47000, Thailand2National Metal and Materials Technology Center, 114 Thailand SciencePark, Paholyothin Rd., Klong 1, Klong Luang, Pathumthani, 12120, Thailand3Integrated Nanotechnology Research Center and Department of Physics, Faculty of Science, Khon Kaen University, 123 Mitrapab Rd., Khon Kaen, 40002, Thailand
摘要The molecular dynamics method is used to simulate the thermophysical properties of SrTiO3 thermoelectric material in the temperature range 300-2200 K. The Morse-type potential functions added to the Busing-Ida type potential for interatomic interaction are used in the simulation. The interatomic potential parameters are determined by fitting to the experimental data of lattice parameters with temperature and the data reported in literature. The linear thermal expansion coefficient, heat capacity and lattice contributions to the thermal conductivity are analyzed. The results agree with the data reported in the literature.
Abstract:The molecular dynamics method is used to simulate the thermophysical properties of SrTiO3 thermoelectric material in the temperature range 300-2200 K. The Morse-type potential functions added to the Busing-Ida type potential for interatomic interaction are used in the simulation. The interatomic potential parameters are determined by fitting to the experimental data of lattice parameters with temperature and the data reported in literature. The linear thermal expansion coefficient, heat capacity and lattice contributions to the thermal conductivity are analyzed. The results agree with the data reported in the literature.
[1] Iwahara H, Esaka T, Uchida H, Macula N 1981 Solid State Ionics 3/4 359 [2] Iwahara H, yajima T, Hibino T, Ushida H 1993 J. Electrochem. Soc. 140 1687 [3] Kurita N, Fukatsu N, Ohashi T 1994 J. Spn. Inst. Metals 58 782 [4] Yajima T, Koide K, Takai H, Fukatsu N, Iwahara H 1995 Solid State Ionics 79 333 [5] Gerblinger J, Meixner H 1991 Sensors Actuators 4 99 [6] Fujimoto M, Kingery W D 1985 J. Am. Ceram. Soc. 68 169 [7] Yamaoka N, Masuyama M, Fukui M 1983 Am. Ceram. Soc. Bull. 62 698 [8] Kawai M, Watanabe S, Hanada T 1991 J. Crystal Growth. 112 745 [9] Mavroides J G, kafalas J A, Kolesar D F 1976 Appl. Phys. Lett. 28 241 [10] Henrich V E 1985 Rep. Prog. Phys. 48 1481 [11] Muta H, Kurosaki K and Yamanaka S 2005 J. Alloy Compd. 392 306 [12] Matsushita E and Tanase A 1997 Solid State Ionics 97 45 [13] Sata N, Hiramoto K and Ishigame M 1996 Phys. Rev. B 54 15795 [14] Yukawa H, Nakatsuka K and Morinaga M 1999 Solid State Ionics 116 89 [15] Seetawan T, Khuangthip T, Amornkitbamrung V, Kurosaki K, Adachi J., Katayama M, Charoenphakdee A and Yamanaka S 2008 Master. Rec. Soc. Symp. Proc. (USA: Materials Research Society) vol 1043 p 1043-T09-09 [16] Seetawan T, Vora-ud A and Amornkitbamrung V 2008 Siam Physics Congress (Khao Yai, Nakhon Ratchasima, Thailand 20--22 March 2008) A-9 [17] Zwanzig R 1965 Ann. Rev. Phys. Chem. 16 67 [18] Zhang Q Y, Jiang S W and Li Y R 2006 J. Comput. Aid. Mol. Des. 13 213 [19] de Ligny D and Richet P 1996 Phys. Rev. B 53 3013 [20] Coughlin J P and Orr R L 1953 J. Am. Chem. Soc. 75 530 [21] Ito M and Matsuda T 2009 J. Alloy Compd. 477 473