Towards the Same Line of Liquid–Liquid Phase Transition of Dense Hydrogen from Various Theoretical Predictions
Binbin Lu† , Dongdong Kang† , Dan Wang, Tianyu Gao, Jiayu Dai**
Department of Physics, National University of Defense Technology, Changsha 410073
Abstract :For a long time, there have been huge discrepancies between different models and experiments concerning the liquid–liquid phase transition (LLPT) in dense hydrogen. We present the results of extensive calculations of the LLPT in dense hydrogen using the most expensive first-principle path-integral molecular dynamics simulations available. The nonlocal density functional rVV10 and the hybrid functional PBE0 are used to improve the description of the electronic structure of hydrogen. Of all the density functional theory calculations available, we report the most consistent results through quantum Monte Carlo simulations and coupled electron-ion Monte Carlo simulations of the LLPT in dense hydrogen. The critical point of the first-order LLPT is estimated to be above 2000 K according to the equation of state. Moreover, the metallization pressure obtained from the jump of dc electrical conductivity almost coincides with the plateau of equation of state.
收稿日期: 2019-09-15
出版日期: 2019-09-24
:
31.15.-p
(Calculations and mathematical techniques in atomic and molecular physics)
64.70.Ja
(Liquid-liquid transitions)
62.50.-p
(High-pressure effects in solids and liquids)
[1] Mao H K and Hemley R J 1994 Rev. Mod. Phys. 66 671 [2] McMahon J M, Morales M A, Pierleoni C and Ceperley D M 2012 Rev. Mod. Phys. 84 1607 [3] Babaev E, Sudbø A and Ashcroft N W 2004 Nature 431 666 [4] Eremets M I and Troyan I A 2011 Nat. Mater. 10 927 [5] Nettelmann N, Becker A, Holst B and Redmer R 2012 Astrophys. J. 750 52 [6] Militzer B, Soubiran F, Wahl S M and Hubbard W 2016 J. Geophys. Res.: Planets 121 1552 [7] Wigner E and Huntington H B 1935 J. Chem. Phys. 3 764 [8] Howie R T, Guillaume C L, Scheler T, Goncharov A F and Gregoryanz E 2012 Phys. Rev. Lett. 108 125501 [9] Dias R P, Noked O and Silvera I F 2016 Phys. Rev. Lett. 116 145501 [10] Zha C S, Liu H, Tse J S and Hemley R J 2017 Phys. Rev. Lett. 119 075302 [11] Loubeyre P, Occelli F and LeToullec R 2002 Nature 416 613 [12] Dias R P and Silvera I F 2017 Science 355 715 [13] Weir S T, Mitchell A C and Nellis W J 1996 Phys. Rev. Lett. 76 1860 [14] Nellis W J 2006 Rep. Prog. Phys. 69 1479 [15] Fortov V E, IIkaev R I, Arinin V A, Burtzev V V, Golubev V A, Iosilevskiy I L, Khrustalev V V, Mikhailov A L, Mochalov M A, Ya V and Zhernokletov M V 2007 Phys. Rev. Lett. 99 185001 [16] Knudson M D, Desjarlais M P, Becker A, Lemke R W, Cochrane K R, Savage M E, Bliss D E, Mattsson T R and Redmer R 2015 Science 348 1455 [17] Ohta K, Ichimaru K, Einaga M, Kawaguchi S, Shimizu K, Matsuoka T, Hirao N and Ohishi Y 2015 Sci. Rep. 5 16560 [18] Zaghoo M, Salamat A and Silvera I F 2016 Phys. Rev. B 93 155128 [19] Zaghoo M, Husb, R J and Silvera I F 2018 Phys. Rev. B 98 104102 [20] Knudson M D and Desjarlais M P 2017 Phys. Rev. Lett. 118 035501 [21] Celliers P M, Millot M, Brygoo S et al 2018 Science 361 677 [22] Scandolo S 2003 Proc. Natl. Acad. Sci. USA 100 3051 [23] Holst B, Redmer R and Desjarlais M P 2008 Phys. Rev. B 77 184201 [24] Delaney K T, Pierleoni C and Ceperley D M 2006 Phys. Rev. Lett. 97 235702 [25] Tamblyn I and Bonev S A 2010 Phys. Rev. Lett. 104 065702 [26] Lorenzen W, Holst B and Redmer R 2010 Phys. Rev. B 82 195107 [27] Morales M A, Pierleoni C, Schwegler E and Ceperley D M 2010 Proc. Natl. Acad. Sci. USA 107 12799 [28] Morales M A, McMahon J M, Pierleoni C and Ceperley D M 2013 Phys. Rev. Lett. 110 065702 [29] McMinis J, Clay I I I R C, Lee D and Morales M A 2015 Phys. Rev. Lett. 114 105305 [30] Mazzola G, Yunoki S and Sorella S 2014 Nat. Commun. 5 3487 [31] Mazzola G, Helled R and Sorella S 2018 Phys. Rev. Lett. 120 025701 [32] Pierleoni C, Morales M A, Rillo G, Holzmann M and Ceperley D M 2016 Proc. Natl. Acad. Sci. USA 113 4953 [33] Pierleoni C, Holzmann M and Ceperley D M 2018 Contrib. Plasma Phys. 58 99 [34] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [35] Chen J, Li X Z, Zhang Q, Probert M I J, Pickard C J, Needs R J, Michaelides A and Wang E 2013 Nat. Commun. 4 2064 [36] Kang D, Sun H, Dai J, Chen W, Zhao Z, Hou Y, Zeng J and Yuan J 2014 Sci. Rep. 4 5484 [37] Kang D and Dai J 2018 J. Phys.: Condens. Matter 30 073002 [38] Städele M and Martin R M 2000 Phys. Rev. Lett. 84 6070 [39] Dion M, Rydberg H, Schröder E, Langreth D C and Lundqvist B I 2004 Phys. Rev. Lett. 92 246401 [40] Lee K, Murray È D, Kong L, Lundqvist B I and Langreth D C 2010 Phys. Rev. B 82 081101 [41] Li Z G, Chen Q F, Gu Y J, Zheng J, Zhang W, Liu L, Li G J, Wang Z Q and Dai J Y 2018 Phys. Rev. B 98 064101 [42] Vydrov O A and van Voorhis T 2010 J. Chem. Phys. 133 244103 [43] Sabatini R, Gorni T and de Gironcoli S 2013 Phys. Rev. B 87 041108 [44] Foulkes W, Mitas L, Needs R and Rajagopal G 2001 Rev. Mod. Phys. 73 33 [45] Saumon D and Chabrier G 1992 Phys. Rev. A 46 2084 [46] Holst B, Nettelmann N and Redmer R 2007 Contrib. Plasma Phys. 47 368 [47] Marx D and Parrinello M 1996 J. Chem. Phys. 104 4077 [48] Marx D, Tuckerman M E and Martyna G J 1999 Comput. Phys. Commun. 118 166 [49] Guidon M, Hutter J and VandeVondele J 2009 J. Chem. Theory Comput. 5 3010 [50] Kapil V et al 2019 Comput. Phys. Commun. 236 214 [51] Ceriotti M, Manolopoulos D E and Parrinello M 2011 J. Chem. Phys. 134 084104 [52] Vandevondele J, Krack M, Mohamed F, Parrinello M, Chassaing T and Hutter J 2005 Comput. Phys. Commun. 167 103 [53] Giannozzi P et al 2017 J. Phys.: Condens. Matter 29 465901 [54] Calderín L, Karasiev V V and Trickey S B 2017 Comput. Phys. Commun. 221 118 [55] Rillo G, Morales M A, Ceperley D M and Pierleoni C 2019 Proc. Natl. Acad. Sci. USA 116 9770 [56] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207 [57] Kang D, Zhang S, Hou Y, Gao C, Meng C, Zeng J and Yuan J 2019 Phys. Plasmas 26 092701 [58] Wu X, Walter E J, Rappe A M, Car R and Selloni A 2009 Phys. Rev. B 80 115201
[1]
. [J]. 中国物理快报, 2022, 39(5): 56101-.
[2]
. [J]. 中国物理快报, 2019, 36(11): 116401-116401.
[3]
. [J]. 中国物理快报, 2016, 33(04): 46502-046502.
[4]
. [J]. 中国物理快报, 2015, 32(02): 23102-023102.
[5]
. [J]. 中国物理快报, 2014, 31(04): 48502-048502.
[6]
. [J]. 中国物理快报, 2013, 30(4): 43101-043101.
[7]
. [J]. Chin. Phys. Lett., 2013, 30(1): 13101-013101.
[8]
. [J]. 中国物理快报, 2012, 29(9): 90303-090303.
[9]
. [J]. 中国物理快报, 2012, 29(9): 90301-090301.
[10]
I. I. Guseinov. One-Range Addition Theorems in Terms of Ψα -ETOs for STOs and Coulomb--Yukawa Like Correlated Interaction Potentials of Integer and Noninteger Indices [J]. 中国物理快报, 2008, 25(12): 4240-4243.
[11]
ZHANG Yue-Xia;KANG Shuai;SHI Ting-Yun. Accurate One-Centre Method for Hydrogen Molecule Ions in Strong Magnetic Field [J]. 中国物理快报, 2008, 25(11): 3946-3949.
[12]
CHEN Jing-Zhe;ZHANG Jin;HAN Ru-Shan. First Principles Calculation of Universal Conductance Fluctuation in Monatomic Metal Chains [J]. 中国物理快报, 2008, 25(3): 1060-1063.
[13]
WU Xue-Wei;NIU Dong-Lin;LIU Xiao-Jun. Photoinduced Reconstruction of Electronic Structure in Half-Metal CrO2 [J]. 中国物理快报, 2007, 24(12): 3509-3512.
[14]
BIAN Xue-Bin;QIAO Hao-Xue;SHI Ting-Yun. B-Spline with Symplectic Algorithm Method for Solution of Time-Dependent Schrödinger Equations [J]. 中国物理快报, 2006, 23(9): 2403-2406.
[15]
Kazuhiro Ishida. Molecular Integral for the Double Electron-Repulsion Potential: A Closed Form Underived for Forty Years [J]. 中国物理快报, 2005, 22(12): 3052-3053.