Structural Evolution of $D_{5h}$(1)-C$_{90}$ under High Pressure: A Mediate Allotrope of Nanocarbon from Zero-Dimensional Fullerene to One-Dimensional Nanotube
Yan Wang1, Mingguang Yao1*, Xing Hua1, Fei Jin2*, Zhen Yao1, Hua Yang2, Ziyang Liu2, Quanjun Li1, Ran Liu1, Bo Liu1, Linhai Jiang1, and Bingbing Liu1*
1State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China 2College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, China
Abstract:The hybridization of fullerene and nanotube structures in newly isolated C$_{90}$ with the $D_{5h}$ symmetric group ($D_{5h}$(1)-C$_{90}$) provides an ideal model as a mediating allotrope of nanocarbon from zero-dimensional (0D) fullerene to one-dimensional nanotube. Raman and infrared spectroscopy combined with classical molecular dynamics simulation were used to investigate the structural evolution of $D_{5h}$(1)-C$_{90}$ at ambient and high pressure up to 35.1 GPa. Interestingly, the high-pressure transformations of $D_{5h}$(1)-C$_{90}$ exhibit the features of both fullerene and nanotube. At around 2.5 GPa, the $D_{5h}$(1)-C$_{90}$ molecule in the crystal undergoes an orientational transition to a restricted rotation. At 6.6 GPa, the tubular hexagonal part occurs and transforms into a dumbbell-like structure at higher pressure. The material starts to amorphize above 13.9 GPa, and the transition is reversible until the pressure exceeds 25 GPa. The amorphization is probably correlated with both the intermolecular bonding and the morphology change. Our results enrich our understanding of structural changes in nanocarbon from 0D to 1D.
. [J]. 中国物理快报, 2022, 39(5): 56101-.
Yan Wang, Mingguang Yao, Xing Hua, Fei Jin, Zhen Yao, Hua Yang, Ziyang Liu, Quanjun Li, Ran Liu, Bo Liu, Linhai Jiang, and Bingbing Liu. Structural Evolution of $D_{5h}$(1)-C$_{90}$ under High Pressure: A Mediate Allotrope of Nanocarbon from Zero-Dimensional Fullerene to One-Dimensional Nanotube. Chin. Phys. Lett., 2022, 39(5): 56101-.
Shang Y, Liu Z, Dong J, Yao M, Yang Z, Li Q, Zhai C, Shen F, Hou X, Wang L, Zhang N, Zhang W, Fu R, Ji J, Zhang X, Lin H, Fei Y, Sundqvist B, Wang W, and Liu B 2021 Nature599 599
[3]
Zhang S, Li Z, Luo K, He J, Gao Y, Soldatov A V, Benavides V, Shi K, Nie A, Zhang B, Hu W, Ma M, Liu Y, Wen B, Gao G, Liu B, Zhang Y, Shu Y, Yu D, Zhou X F, Zhao Z, Xu B, Su L, Yang G, Chernogorova O P, and Tian Y 2022 Natl. Sci. Rev.9 nwab140
[4]
Tang H, Yuan X, Cheng Y, Fei H, Liu F, Liang T, Zeng Z, Ishii T, Wang M S, Katsura T, Sheng H, and Gou H 2021 Nature599 605
[5]
Wang L, Liu B, Li H, Yang W, Ding Y, Sinogeikin S V, Meng Y, Liu Z, Zeng X C, and Mao W L 2012 Science337 825
Wang L, Liu B, Liu D, Yao M, Yu S, Hou Y, Zou B, Cui T, Zou G, Sundqvist B, Luo Z, Li H, Li Y, Liu J, Chen S, Wang G, and Liu Y 2007 Appl. Phys. Lett.91 103112
[19]
Yamawaki H, Yoshida M, Kakudate Y, Usuba S, Yokoi H, Fujiwara S, Aoki K, Ruoff R, Malhotra R, and Lorents D 1993 J. Phys. Chem.97 11161
Aguiar A L, Barros E B, Capaz R B, Souza F A G, Freire P T C, Filho J M, Machon D, Caillier C, Kim Y A, Muramatsu H, Endo M, and San-Miguel A 2011 J. Phys. Chem. C115 5378
[29]
Yao M, Wang Z, Liu B, Zou Y, Yu S, Lin W, Hou Y, Pan S, Jin M, Zou B, Cui T, Zou G, and Sundqvist B 2008 Phys. Rev. B78 205411