Spin Polarization Properties of Na Doped Meridianal Tris(8-Hydroxyquinoline) Aluminum Studied by First Principles Calculations
REN Jun-Feng** , YUAN Xiao-Bo, HU Gui-Chao
College of Physics and Electronics, Shandong Normal University, Jinan 250014
Abstract :We theoretically investigate the electronic structure and spin polarization properties of Na-doped meridianal tris(8-hydroxyquinoline) aluminum (Alq3 ) by first principles calculations. It is found that the spin density is distributed mainly in the Alq3 part in the Alq3 :Na complex. Electron charge transfer takes place from the Na atom to the Alq3 molecule, which induces asymmetric changing of the molecule bond lengths, thus the spin density distribution becomes asymmetric. Spin polarization of the complex originates from the preferable filling of the spin-split nitrogen and carbon p -orbitals because of the different bond length changes of the Alq3 molecule upon Na doping.
收稿日期: 2013-11-28
出版日期: 2014-03-25
:
85.75.-d
(Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)
73.61.Ph
(Polymers; organic compounds)
71.15.Mb
(Density functional theory, local density approximation, gradient and other corrections)
31.15.-p
(Calculations and mathematical techniques in atomic and molecular physics)
[1] Naber W J M, Faez S and Gvan der Wie W 2007 J. Phys. D: Appl. Phys. 40 R205 [2] Dediu V A, Hueso L E, Bergenti I and Taliani C 2009 Nat. Mater. 8 707 [3] Gu H, Zhang X, Wei H, Huang Y, Wei S and Guo Z 2013 Chem. Soc. Rev. 42 5907 [4] Raman K V et al 2013 Nature 493 509 [5] Kalinowski J, Cocchi M, Virgili D, Marco P D and Fattori V 2003 Chem. Phys. Lett. 380 710 [6] Tarafder K, Sanyal B and Oppeneer P M 2010 Phys. Rev. B 82 060413 (R) [7] Xiong Z H, Wu D, Valy Vardeny Z and Shi J 2004 Nature 427 821 [8] Barraud C et al 2010 Nat. Phys. 6 625 [9] Giro R, Rosselli F P, Carvalho R S, Capaz R B, Cremona M and Achete C A 2013 Phys. Rev. B 87 125204 [10] Baik J M, Shon Y, Lee S J, Jeong Y H, Kang T W, Lee J L 2008 J. Am. Chem. Soc. 130 13522 [11] Wang Y P, Han X F, Wu Y N and Cheng H P 2012 Phys. Rev. B 85 144430 [12] Wang F, Pang Z, Lin L, Fang S, Dai Y and Han S 2010 Appl. Phys. Lett. 96 053304 [13] Zhang R Q, Lu W C, Lee C S, Hung L S and Lee S T 2002 J. Chem. Phys. 116 8827 [14] Meloni S, Palma A, Schwartz J, Kahni A and Car R 2003 J. Am. Chem. Soc. 125 7808 [15] Yu S et al 2013 J. Phys. Chem. Lett. 4 3170 [16] Li Y Q, Tang J X and Hung L S 2003 Chem. Phys. Lett. 376 90 [17] Chan M Y, Lee C S and Lee S T 2007 Adv. Funct. Mater. 17 2509 [18] Johansson N, Osada T, Stafstr?m S, Salaneck W R, Parente V, Santos D A D, Crispin X and Bredas L J 1999 J. Chem. Phys. 111 2157 [19] Kim K, Hong K, Kim S and Lee J L 2012 J. Phys. Chem. C 116 9158 [20] Kresse G and Hafner J 1993 Phys. Rev. B 47 558 Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [21] Curioni A, Boero M and Andreoni W 1998 Chem. Phys. Lett. 294 263 [22] Halls M D and Schlegel H B 2001 Chem. Mater. 13 2632 [23] Zhang R Q, Lee C S and Lee S T 2000 Chem. Phys. Lett. 326 413 [24] Yuan X B and Ren J F 2013 J. Phys. Chem. C 117 16238 [25] Hou D, Qiu J, Xie S and Saxena A 2013 New J. Phys. 15 073044
[1]
. [J]. 中国物理快报, 2022, 39(10): 108502-.
[2]
. [J]. 中国物理快报, 2022, 39(4): 47502-.
[3]
. [J]. 中国物理快报, 2021, 38(12): 128501-.
[4]
. [J]. 中国物理快报, 2021, 38(8): 87702-.
[5]
. [J]. 中国物理快报, 2020, 37(11): 117101-.
[6]
. [J]. 中国物理快报, 2020, 37(8): 87105-087105.
[7]
. [J]. 中国物理快报, 2020, 37(7): 78501-.
[8]
. [J]. 中国物理快报, 2020, 37(5): 58501-.
[9]
. [J]. 中国物理快报, 2020, 37(3): 38504-.
[10]
. [J]. 中国物理快报, 2019, 36(10): 107102-.
[11]
. [J]. 中国物理快报, 2017, 34(5): 57502-.
[12]
. [J]. 中国物理快报, 2016, 33(03): 37501-037501.
[13]
. [J]. 中国物理快报, 2015, 32(11): 117201-117201.
[14]
. [J]. 中国物理快报, 2014, 31(2): 27501-027501.
[15]
. [J]. 中国物理快报, 2013, 30(12): 128501-128501.