The expansion formulas in terms of complete orthonormal sets of Ψα-exponential type orbitals are established for the Slater type orbitals and Coulomb--Yukawa-like correlated interaction potentials of integer and noninteger indices. These relations are used in obtaining their unsymmetrical and symmetrical one-range addition theorems. The final results are especially useful in the calculations of multicentre multielectron integrals occurring when Hartree--Fock--Roothaan and explicitly correlated methods are employed.
The expansion formulas in terms of complete orthonormal sets of Ψα-exponential type orbitals are established for the Slater type orbitals and Coulomb--Yukawa-like correlated interaction potentials of integer and noninteger indices. These relations are used in obtaining their unsymmetrical and symmetrical one-range addition theorems. The final results are especially useful in the calculations of multicentre multielectron integrals occurring when Hartree--Fock--Roothaan and explicitly correlated methods are employed.
(Theory of electronic structure, electronic transitions, and chemical binding)
引用本文:
I. I. Guseinov. One-Range Addition Theorems in Terms of Ψα -ETOs for STOs and Coulomb--Yukawa Like Correlated Interaction Potentials of Integer and Noninteger Indices[J]. 中国物理快报, 2008, 25(12): 4240-4243.
I. I. Guseinov. One-Range Addition Theorems in Terms of Ψα -ETOs for STOs and Coulomb--Yukawa Like Correlated Interaction Potentials of Integer and Noninteger Indices. Chin. Phys. Lett., 2008, 25(12): 4240-4243.
Hylleraas E A 1928 Z. Phys. 48 469 [3] Hylleraas E A 1930 Z. Phys. 60 624 [4] Hylleraas E A 1930 Z. Phys. 65 209 [5] L\"{owdin P O 1955 Phys. Rev. 97 1474 [6] L\"{owdin P O 1960 Rev. Mod. Phys. 32 328 [7] Szasz L 1962 Phys. Rev. 126 169 [8] James H M and Coolidge A S 1933 J. Chem. Phys. 1 825 [9] Kolos W et al 1960 Rev. Mod. Phys. 32 205 [10] Kolos W and Wolniewicz L 1964 J. Chem. Phys. 41 3663 [11] L\"{uchow A et al 1993 Int. J. Quant. Chem. 45 445 [12] Levine I N 2000 Quantum Chemistry 5th edn(Englewood Cliffs, NJ: Prentice-Hall) [13] Sims J S et al 2002 Int. J. Quant. Chem. 901600 [14] Klopper W et al 2006 Int. Rev. Phys. Chem. 25427 [15] Guseinov I I 2002 Int. J. Quant. Chem. 90 114 [16] Condon E U and Shortley G H 1970 The Theory ofAtomic Spectra (Cambridge: Cambridge University Press) [17] Guseinov I I 2003 J. Mol. Model. 9 135 [18] Guseinov I I 2006 J. Math. Chem. 39 253 [19] Guseinov I I 2005 J. Math. Chem. 38 489 [20] Guseinov I I, Mamedov B A, And{\ic Z and Cicek S 2008 J. Math. Chem. DOI:10.1007/s10910-008-9352-0 [21] Guseinov I I et al 2008 MATCH (submitted) [22] Guseinov I I 1998 J. Mol. Struct. (Theochem.) 422 77 [23] Guseinov I I 2003 J. Mol. Model. 9 190 [24] Guseinov I I and Aksu H 2008 Chin. Phys. Lett. 25 896 [25] Guseinov I I 2007 J. Math. Chem. 42 415 [26] Guseinov I I 2008 J. Math. Chem. 43 1024 [27] Guseinov I I 1970 J. Phys. B 3 1399