摘要Combining the non-equilibrium Green's function method and density functional theory, we provide a first-principle scheme to calculate the universal conductance fluctuation (UCF) in quasi one-dimensional monatomic chains subject to a magnetic field. Our results show that for these monatomic chains, the amplitude of the UCF is much smaller than the previous theoretical prediction for mesoscopic conductors by Lee et al. [Phys. Rev. Lett. 55 (1985) 1622; Phys. Rev. B 35 (1987) 1039] The reason is that the ergodic hypothesis fails in these nanowires due to the confinement of geometry. We ascribe the phenomenon to the flux-dependent density of states fluctuation.
Abstract:Combining the non-equilibrium Green's function method and density functional theory, we provide a first-principle scheme to calculate the universal conductance fluctuation (UCF) in quasi one-dimensional monatomic chains subject to a magnetic field. Our results show that for these monatomic chains, the amplitude of the UCF is much smaller than the previous theoretical prediction for mesoscopic conductors by Lee et al. [Phys. Rev. Lett. 55 (1985) 1622; Phys. Rev. B 35 (1987) 1039] The reason is that the ergodic hypothesis fails in these nanowires due to the confinement of geometry. We ascribe the phenomenon to the flux-dependent density of states fluctuation.
(Calculations and mathematical techniques in atomic and molecular physics)
引用本文:
CHEN Jing-Zhe;ZHANG Jin;HAN Ru-Shan. First Principles Calculation of Universal Conductance Fluctuation in Monatomic Metal Chains[J]. 中国物理快报, 2008, 25(3): 1060-1063.
CHEN Jing-Zhe, ZHANG Jin, HAN Ru-Shan. First Principles Calculation of Universal Conductance Fluctuation in Monatomic Metal Chains. Chin. Phys. Lett., 2008, 25(3): 1060-1063.
[1] Fedrov G 2005 Phys. Rev. Lett. 94 66801 [2] Tserkovnyak Y and Halperin B I 2006 Phys. Rev. B 74 245327 [3] Vila L, Giraud R, Thevenard L, Lema\^\i tre A, Pierre Fet al 2007 Phys. Rev. Lett. 98 027204 [4] Kong J, Yenilmez E, Tombler T W, Kim W, Dai H J et al 2001 Phys. Rev. Lett. 87 106801 [5] Liang W J, Bockrath M, Bozovic D, Hafner J H et al 2001 Nature 411 665 [6] Langer L, Bayot L, Grivei E et al 1996 Phys. Rev. Lett. 76 479 [7] Man H T and Morpurgo A F 2005 Phys. Rev. Lett. 95 026801 [8] Hod O, Rabani E and Bare R 2006 Accounts Chem. Res. 39 109 [9] Stone A D 1985 Phys. Rev. Lett. 54 2692 [10] Lee P A and Stone A D 1985 Phys. Rev. Lett. 55 1622 [11] Webb R A, Washburn S and Umbach C P 1988 Phys. Rev. B 37 8455 [12] Lee P A, Stone A D and Fukuyama H 1987 Phys. Rev. B 35 1039 [13] Taylor J, Guo H and W J 2001 Phys. Rev. B 63 245407 [14] Xue Y Q, Datta S and Ratner M A 2002 Chem. Phys. 281 151 [15] London F 1937 J. Phys. Radium 8 397 [16] Ditchfield R 1974 Mol. Phys. 27 789 [17] Pople J A 1962 J. Chem. Phys. 37 53 [18] Chen J Z, Zhang J et al 2007 Chin. Phys. (accepted) [19] Agr\"a it N, Yeyatib A L and Ruitenbeeck J M V 2003 Phys. Rep. 377 81 [20] Kozub V I, Caro J and Holweg P A M 1994 Phys. Rev. B 50 15126 [21] Roche S and Saito R 2001 Phys. Rev. Lett. 87 246803 [22] Reed M A, Zhou C, Muller C J, Burgin T P and Tour J M 1997 Science 278 252 [23] Ventra M D, Pantelides S T and Lang N D 2000 Phys. Rev.Lett. 84 979 [24] Emberly E G and Kirczenow G 1998 Phys. Rev. B 58 10911 [25] Zhang J X, Hou S M, Li R, Qian Z K et al 2005 Nanotechnology 16 3057 [26] Hou S M, Li R , Qian Z K, Zhang J X et al 2005 J. Phys.Chem. A 109 8356