Optical Switch Formation in Antimony Super-Resolution Mask Layers Induced by Picosecond Laser Pulses
ZHAI Feng-Xiao1, ZUO Fang-Yuan2, HUANG Huan1, WANG Yang1, LAI Tian-Shu2, WU Yi-Qun1, GAN Fu-Xi1
1Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 2018002State Key Laboratory of Optoelectronic Materials and Technology, Department of Physics, Sun Yat-Sen University, Guangzhou 510275
Optical Switch Formation in Antimony Super-Resolution Mask Layers Induced by Picosecond Laser Pulses
ZHAI Feng-Xiao1, ZUO Fang-Yuan2, HUANG Huan1, WANG Yang1, LAI Tian-Shu2, WU Yi-Qun1, GAN Fu-Xi1
1Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 2018002State Key Laboratory of Optoelectronic Materials and Technology, Department of Physics, Sun Yat-Sen University, Guangzhou 510275
摘要Sb is a classic material of a super-resolution near field structure (super-RENS) mask layer in which the optical switch formation is often realized by nanosecond laser pulse stimulation. We achieve fast and repeatable optical switching driven by picosecond laser pulses in a proper fluence range on Sb thin films. The optical properties of Sb thin films before and after switching are studied by surface-sensitive micro-area ellipsometry. The change of optical constants after switching is less than 2% in the whole visible range. The Sb mask layer is shown to be very promising for ultrafast super-resolution optical storage applications.
Abstract:Sb is a classic material of a super-resolution near field structure (super-RENS) mask layer in which the optical switch formation is often realized by nanosecond laser pulse stimulation. We achieve fast and repeatable optical switching driven by picosecond laser pulses in a proper fluence range on Sb thin films. The optical properties of Sb thin films before and after switching are studied by surface-sensitive micro-area ellipsometry. The change of optical constants after switching is less than 2% in the whole visible range. The Sb mask layer is shown to be very promising for ultrafast super-resolution optical storage applications.
[1] Tominaga J, Nakano T and Atoda N 1998 Appl. Phys.Lett. 73 2078 [2] Zhang F, Xu W D, Wang Y, and Gan F X 2005 Solid StateCommun. 134 375 [3] Hung T T and Lu Y J 2007 Jpn. J. Appl. Phys. 46 3906 [4] Hung T T and Lu Y J 2008 Jpn. J. Appl. Phys. 47 6042 [5] Shi L, Chong T C, Tan P K et al 2005 Jpn. J. Appl.Phys. 44 3615 [6] Jiang L X, Wu Y Q, Wang Y et al 2009 Chin. Phys.Lett. 26 024214 [7] Pilard G, Fery C, Pacearescu L et al 2009 Jpn. J.Appl. Phys. 48 03A064 [8] Fukaya T, Tominaga J, Nakano T et al 1999 Appl. Phys.Lett. 75 3114 [9] Tominaga J, Fuji H, Sato A et al 2000 Jpn. J. Appl.Phys. 39 957 [10] Tsai D P and Lin W C 2000 Appl. Phys. Lett. 77 1413 [11] Ou D R, Zhu J and Zhao J H 2003 Appl. Phys. Lett. 82 1521 [12] Wei J S and Gan F X 2003 Appl. Phys. Lett. 822607 [13] Wei J S, Wang Y, Xu W D et al 2003 Opt. Commun. 224 269 [14] Wei J S, Zhou F, Wang Y et al 2005 J Appl. Phys. 97 073102 [15] Zhou F, Gan X, Xu W D and Gan F X 2006 Appl. Phys.B 84 43 [16] Huang H, Zuo F Y, Zhai F X et al 2009 J. Appl.Phys. 106 063501 [17] Zhai F X, Wang Y, Wu Y Q et al 2008 Proc. SPIE 7125 71251W [18] Shima T, Kim J, Tominaga J and Atoda N 2001 J. Vac.Sci. Technol. A 19 826 [19] Roseburgh D S and Cole R J 2004 J. Phys.: Condens.Matter 16 S4279 [20] Jiang F and Okuda M 1980 Bull. U. Osaka Pref. A 30 39 [21] Wiggins S M, Gawelda W M, Solis J et al 2003 J.Appl. Phys. 94 4961